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The New Fundamental Trajectories:
Part 1 - Hyperbolic/Elliptic Trajectories

Joseph] Smulsky
Institute of Earth's Cryesphere
S:berian Branch of Russian Academy of Sciences
F O Box 1230, Tyumen, 625000, RUSSIA, e mails smulski@ikz ru, jsmulsky@man] ru

Fundamental trajectones are predictad from the mteraction of two charged bodies We use classical me-
chamics, 1 2, mass 15 constant and force depends on relatn e distance and veloaity The possible range of trajec-
tories 1s analyzed At small velocibies the trajectones are classical, and at large velocities they become relatiis

tic Forees ansing from new mecharusms can explam bath mucrocosm and macrocosm  Part 1 considers hyper-

bohe trajectones

Key words* force, motion, trajecicnes, Kmemalics, momentom pericenter, apocenter, attraction, rePulsmn

1. Introduction

Modern atomuc physics focuses on randem events described
by statistical probalnlistic prinaples For example, according to
Heisenberg's point-of-view one cannot know the exact positon
and veloaty of a particle in orbit, but one can shll describe these
altnbutes with some probability In an atom, the microcosm can
be described with the assistance of probahilishc functions, but
nct by trajectories taken by particles

Limitatiens on the precsion of measurements on a moving
particle make absolute knowledge of a partcle’s posihen and
momentum unpossible, but do not mean that a particle’s posttion
and momentum do not exist in theory and reality Therefore sci-
entists now and again retum to the problem of determined mo-
tions This was clearly evident m the public discussion which
was orgamzed by the Editers of Apeiron (see Aperron, 1995, vol
2, no 4) The present paper considers the interactions of two
charged particles, accurately predicts some fundamental trajecta-
ries, and examines their charactenstics

Interaction of two charged bodies depends on not only the
distance but also the velocity between them According to the
Theory of Relativity (TR), the mass-veloaity relation expresses
the dependence of the interaction upon veloaty However, the
authors of paper [1] have shown that the mass of a body should
be constant, but the force on 1t should depend on veloaty
F=Fflv/c), where Fy 1s the force of mteraction between two
bodies when they are in relative rest, 1¢ therr relative veloaty
v =0, flu/c) 1s the effectrveness cogffictent, which 1s a funchon of
v/ ¢, where ¢1s the veloaity of the transmtted interaction.

Other myestigators have proposed expressions for interaction
forces whuch depend not only on distance and velocity, but also
on acceleration [2,3]  In our cpuuon, any dependence of the force
F on acceleration has a shortcommg; it 15 expressed non exphatly,
since according to the Newton’s second law F=ma, the sum-
mands with acceleration a should be on the nght-hand side of
this equahity but not on the left-hand side There are many con-
‘radictions i a force law involving accelerabon  We do not focus
on them here, as thus kind of 'force law” contradicts the essence of
‘force’

1f one body acts en another, then the result 1s an acceleration
of the second body In other words, the accelerabon 1s an expres-
sion of thus effect From another pemnt of view, one measures the
effect by the assistance of @ force  For the purpose of measuring
an effect (of acceleration) on a second body, one detects the mo-
tions of the second bedy by assistance of a third body —for ex-
ample, a spring and 1ts deformatton—1n order to define the force
magnuitude Therefore, both foree and accelerntion define the action
on the body They are the same phenomenon Acceleration ex-
ists objectively, but Newton has mtroduced the concept of force
to describe the measurable effect

The proporticnality coefficient (m}) between the force and the
acceleraton 15 due to a chowce of standards (for example, the
platinum-indmm cylinder with height and diameter of 39 mm,
which we call one kidogram) By flus standard, we establish
measurement units for acceleration and force Thus, Newton's
second law F=ma 1s expressing the relabonship of force and
acceleration [4]

5o, 1f we set forth a force, then acceleration 1s speaified By
assistance of mtegration, we find speed 1®t), and positon S(f),
te we find all parameters of a body’s motion So, the forece cannot
depend on acceleration, but it can depend on veloaity and dis-
tance— which are relative to the causative body

2. Interaction Depending on
Distance and Velocity

Our investigalions [5,6] have shown that the force of one
pomnt-charge ¢y actng on another charge g3 moving with veloc
ity v through separation Ris

- 3/2
F=t11:72 Ru—ﬁz)/[R?—meP 1)

where 1—3 =v/e, o =c/ J;, ¢ 1s the speed of hght in vacuum,

eand p are the dielectric and magnetic permeability of the me-

dium 1in which the charged objects are located It should be

naoted that similar results were obtained by other researchers [7)
The force (1) can be written in a form F = F,f(B) where
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R _ ar2
Fo =% and f[ﬁ]=flfﬁzk/[l—ll}xﬂ ’Rl‘*]

When charge velocity v is small, the force (1) coinrides with Cou-
lomb's law. But as the velocity increases, the foree decreases to
zoro (except for B exactly perpendicular to B). That is, we let the
charge speed approach the maximum limit on the speed of elec-
tromagnetic propagation (i -> 1), and at this limit, no action is
exerted on the charged body, and it is not accelerated.

According to (1) and the second law of Newton, the accelera-
tion of one charge relative to another will be written as

d’R — K
-'—:l.llRflﬁz)/{R‘s—lﬁxRF] )
dit®
where 1 is the interaction constant.

Hy = @ golmy +my )/s my msy 3

As a result of solving Eq. (2) [8], we obtained a trajectory in a
polar coordinate system as follows:

¢=I(R2u,)"dR )

where
h2

V. =g 41 o
ClR

ﬂ...)=2%(1/-JR2 ~n2 1 -1/ B2 42 fcf]
a

'U,?g k

120

2
e expl f(...)] (5)
of ch&]

with

where v, is the radial velocity, vy and v, are the transverse
and radial components of velocity on the radius Ry, and
h =voRy=vR
stant for all points of the trajectory.

is the kinematic memen‘um, which is con-

3. Some Interaction Limifs

Equations (1) to (5) describe interactione propagating with the
final velocity ¢. If, as in General Relativity Theory (GRT), the
gravitational action is considered to propagate with light velocity
€, then these expressions will also describe gravity. In this case
the interaction constant is

K1 = foml + mz} (6)

Equalions in GRT are solved approximately by expansion in a
series and relaining all terms up to second order in B. If we ex-
pand the series with respect to 012 with in the same accuracy, and
substitute Eq. (5) into (4), then we obtain the equation of motion
in a centrally symmetric field in GRT [9]
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hdR (7

¢:J[R2-ch+ vs —(ef +h*/ R*)X1- R,/ R)

where Rg =.2p /! Clg is called a gravitational radius.
Consider the limiting case of small velocities. First we shall
reduce Egs. {4) and (5) to the relative foerm

q>=J’(E2 v 1dR (8)
with
2
= 1
'ur = — —g—a—(l—ﬁi)exp[ﬂ..-ﬁ (9)
Bp R2
where

f..) =20, B2

Here R=R/ R, is the relative radius; R, is the radius to the

nearest point of the trajectory (pericenter), at which also Vg =0;

Vr =%, /U, is the relative radial velocity; v, is the tangential

velocity at the pericenter; B, = vy /¢y; and @y = l’(RPup)z
is the trajectory parameter. [t has been shown in [8] that when
¢ — ==, Eq. (5) passes to the classical expression

v, =Jufo +(u1/h+h/Ro)3 (i /»rhu::)2 (10)

After referring v to the parameters at the pericenter, the relative
radial velocity is

o = J(O:lf 1)%-(ay+1/ R)?

Integrating (8) with the boundary conditions ¢ = 0 and R=1,
we get the equation of fundamental classical trajectories:

§=11[(a1 +1)cosp—oy ] (11)

The form of trajectories is defined by the value of the parameter
o as follows: Circle: @; =-1; Ellipse: -1 <y <—0.5; Parabola:
o, =-0.5; Hyperbolaa —0.5<0q<0; Straight
03 =0. Thus Egs. (4), (5), (8) and (9) represent the most com-
mon fundamental trajectories, which are valid both for small
velocities of motion and large velocities tending to the speed of
light. Incontrast to classical trajectories, these trajeclories are bi-
parametric; they depend not only on @) but also the relative ve-

Line:

locity f,. Therefore, they are of both physical and mathematical

interest.
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4. Numerical Method, Asymptotic Solution
and Hyperbolic Trajectories

Equation (8) was integrated numerically using a PC AT com-
puter with the help of the MathCAD program To increase the
speed and accuracy of integration, the region of changing relative
radius R was divided into domains, integration was performed
in each domain, and then the results were combined Using as-
ymptotic solutions given in the Appendix and test samples, we
found that the integration error does not exceed one part per
thousand The parameters were vaned in computations as indi-
cated oy =(-0.1;-02;-0.3,-0.4;-0.5;-0.6;-0.7; 0.8;-0.9) and
Br,=00.1;03;0709)

The values of other parameters, which were defined by the
pecubarities of trajectories, are also given The computer pro-
grams were wntten in FORTRAN  Only the most charactenistic
types of trajectories are presented below

One-sided branches of the hyperbolic trajectones are shown
m Fig 1:n a Cartesian system of coordinates (Z=2/R, and

=y/R,) The attracting center 15 at the origin of the coordi-

nate system, and a parhicle moves from the pericenter at
*=1; ¥=0 to alocation at infiruty or mee versa A smooth
and continuous process of integration 1s possible for all trajecto-
ries except No 7.

When B, =0.1, the trajectory virtually comncaides with the
classical one. With an increase in veloaty at the pericenter, the
angle between asymptotes @, decreases Wath veloaty limut
Bpequal to Bpe with the value 0954, the angle between asymp-
totes becomes negative

Trajectory 7 differs from the others not anly by the angle
Pz <0 To this end, let us consider some details of the integra-
tion. The pamt R=1ia singular peint of integral (8) since 1t
converts (9) to zero Therefore the numerncal mtegration was
performed from R =1001 to R = 1000, and the angle increment
@in the region 1 < R <1001 1s the asymptotic solution

3y

the denivation of which 1s given in the Appendix  As one can see,
the denominator in the first multiplier vamshes with

Bp = Bpe =41 -0}

In this case when Pp. = 0954 and R approaches 1, the angle

¢p=VR" - (12)

(13)

@ tends to infiraty. Thus result was venfied by numerical integra-
tion, namely, by sequential setng of the integraton vanable
starting at B = 10001 and then mcreasing shghtly to R =
100001, etc  Thus the particle on the trajectory with limiting ve-
oaty Bpe at the pericenter, while moving from infimty, reaches
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a arcle with radius R = 1 and rests on 1t mfinstely long—te, the
particle moving from infiruty 1s captured by the attracting center
nte a circular orh:t

4 3

L
~—]
=

Figure 1 The trajectory at o3 = =03 and sub-light speed at
the percenter (f, <B,.} with half-angles between asymp-
totes @, and approaching veloaties i, as B — = mfiuty

(Integration begins at R =1.001 for trajectory 7 ).

Ne 1 2 3 4 5 6 7
B.. 01 03 05 07 09 093 1554
o - 006 005418 015 | -029 | -0486 | -0519 | -0546
B Q063 0208 0329 0480 | 064% | 0668 B es?
ng 64 8 64 4 638 61 % 506 403 -5 58

We conmider this pracess in mare detaal  With ¢ approaching

infinity, a circular ort t1s feasible at vr =0 1n Bq. (8) Then from
Eq (%), with allowan: r thus condition when 7 — =, we get

0 5w(1 Ba/R*) (1~ ﬁp]

ﬁp/ \'R ~B5 'ﬂp/ﬁ -B3

The radius of a crcular orbit 1s simultaneously that of the
= 1. Having found the limit of the nght-hand
B, for a caircular orbit, we

(14)

pericenter, 1¢ R
side (14) where @y, = o3 and By =

get
@y, = 41"' ﬁic

With small velocities (B, — 0), 1t follows from (15) that oy = -1
Thus corresponds to a circular orbit Since Eqs (13) and (15) are
identical, this fact convinces us again that trajectory 7, having
attained the limiting veloaity B, at the pencenter, passes to a

arrcular orbit as shown in Fig 1

(s)
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Figure 1 also shows the radial velouties of particles at maxi
mum velocity By and half-angle ¢, between asymptotes For
trajectory 7, the ploting begins at R =100 Usually, with an
mcrease 1n the velocity of the particle as & — ¢, 1ts veloaity also
increases at the pericenter The violation of thus rule for trajecto-
nes 6 and 7 1s accounted for by the fact that the trajectory pa-
rameter @) depends on veloaity at the penicenter v, Therefore
1t 1s expedient to consider the interaction parameter @, which 15
independent of veloaty

@=2/R,f =-R, /R, (16)

and related to o as
o =207 (17)

As 15 seen from Fig 1, the modulus of the interaction parameter
oty for all hyperbolic trajectones 1s less that 1, 1¢ according to
(16) the pericenter rachus 15 larger than the gravitational one

The limted range 1s the third property of trajectory 7 i Figure
1 In the region P <P, <1 the radicand in (9) 1s negative, 1¢
no trajectones exist In order to numencally study the other pos-
sible trajectories, the parameters of Egs (4) and (5) were referred
to parameters vy, Ry at an arbitrary point of the trajectory In
this case, Eq (8) remains without change, and mnstead of (9) we
get

o = —l—Jl P2 IR - (1-Bh-Bh)ew ) 8
Buo

with
—2
fl.) =200 B2, 1/ *JR - P -1/ Jl—ﬁfo]
where
— R v = v i)
R=—e, lﬂ‘_‘_m'r by = ——, ﬁr0=-'?£" ujd'-__le‘
Ry 1 Vo 1 Ryvio

Equations (8) and (18) were integrated in two regions, R>1
and R<1 Values of By >Bpc were given to the relative trans-

verse veloaty, and the radial veloaty B.g was varied (see Fig

Vol. 13, No. 2

2) Inall calculations, we found that a decrease in R to a certain
value R — Py made the radial velocity tend to zero, 1e, ths
point 1s the pericenter R= R, And the value R,/ Ry=Buw=1
indicates according to the momentum conservation law
h= ?2[3,0 =1 that the transverse velocity at this point tends to
lght but does not reach 1, 1e
These trajectories with almost hght

the speed of
Bp = ﬁpo =Vp '(cl =1
speed at the pericenter are rerormalized to B, and presented in
Fig 2 Since the trajectory parameter @y = jy {hv, 1s related to

c:f = |3 fhuyg as

o =aifo (19)

1t follows that i this case oy =-0.3, and trajectones of Fig 2
may be considered as continuation of trajectones of Fig 1 wath
the particle velocity increasing to infiraty However, 1n contrast
to the trajectories of Fig 1, with an mncrease in Bn. (see, trajecto-
nies 6, 5, 4, 3 and 2 of Fig 1), the angle ¢, between asymptotes
mncreases For a particle moving with hght speed (B =1), the
angle 1s equal to 7t/ 2 (see trajectories with number 1),1¢ the par-
ticle with ight speed moves along a vertical line

3/\3’

<,

y T ] !
4 2 1
L ; | w ?

Figure 2 The trajectories at ag = =03 and light speed at the

__,.-
_.--‘—""-H--4 ———-J

peneenter (B, =1 4)

No 5 4 2 1 5 3 1 6 1 7 1
Ben 09 G 96 096 096 097 097 097 o8 098 (987 0987
" 0576 | -0516 | -0516 | -0576 | -0382 | -03582 | -0382 | -0588 | -0388 | -Ds92 | -05%2
B 01 02 025 028 01 02 0243 0l 0199 01 0151
ik | 072 0830 0949 10 707 897 1 0681 1 104% 1
o0 33 73 84 90 33 78 ) 23 a0 412 90

Svmbeol * ind:cales data agreement
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Numencal solutions have shown that trajeclones with hght
speed at the pericenter are obtamned at transyerse particle veloc
iy

ﬁfﬂ_ > E'pc (20)

However, with further mcrease 1n transverse veloaty (see trajec-
tory 7an Fig 2) the arbit becomes ellipse hike, and the angle of 1ts
apocenter from the pericenter 15 §,= 412 In this case the pe
riod of return to the pericenter will be realized over an angle
82 4° and more than four such periods exist for one turn  Since
the racius of the apocenter K,=104 differs shghtly from the
pericenter radius, the motion will take places along the creular
orbit with four small jumps per turn During jumps the particle
veloaily decreases, and then 1t tends to light speed at the pericen-
ter Since in this case ¢, 15 not a multiple of a1/ n, where nis an
integer, the location of penicenlers will change The pericenters
will rotate with an angle per turn of

Ag, =2¢,(n+1)-2n (21)
where n = INTEGER (n/9,) 15 an integer Apparently, for the
ellipse-like orbits such as trajectory 7 of Fag 2, the radicand in
(18) at large B should be negative We shall find the limiting

parameters, a?p, and Pop = 1}13,.0 +B,p, from the condition

B =0 ?,. =0 when B> = After transformation of (18) we get
ol = 5 B [ 1~ In(1 —B%,,]] @)

With Ry = R, and small velocities when By, = By, — 0, at fol-

lows that (11 p=—0.5, 1e, relation (22) determnes the parame-
ters of parabolic trajectories  If the transverse veloaty of the par-
ticle 15 larger than the hmiting veloaity Bp, and larger than Py,
then the trajectory will be ellipse-like, and the particle will move
at hght speed at the pericenter

The parameters which produced the ellipse-like trajectories
(Fig 3) were determined under the following conditions With
an ncrease in the radial veloaty for trajectories 1, 2 and 3, the
excursion AR = R, —1 and the angle of the apocenter increase
With an addihonal increase 1n B, the value R, grows continu-

ously and the angle ¢, attains a maximum for trajectory 4 and
then decreases In this case, trajectories 4 and 5 have apocenters
which are away from the pericenters by more than one tumn
With a further increase n radial velocaity, the trajectory (see line
2) 1s broken When By approaches unuty, trajectories are (lat-
lened (analogous to trajectomies 1-3 in Fig 2), and at hight speed
they turn into straight lines The hyperbolic trajectones 1n Fig-
ures 1 and 2 may coincide n separate regions However, differ-
°nt interachon parameters correspond to the trajectones, and the
veloeities of the parhcle motion along them are different

Thus, 1n the region -0.5 <0y <0, particles have trajectorses

lepending upon their veloaities P, <Py produces hyperbolic-
tke trajectories, and Pp=Bpe produces circular trajectones of
'articles captured as they armve from great distances, or
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B »Bpe produces trajectones of particles moving at the speed
of hght In the last case, where By > By, the parbcle’s arbit 1s

ellipse-like, and the period of orbit can differ from 27 radians

7

|

L

ba

o e
p

Figure 3 Elhpse-like trajectones (1-5) wath hight speed at the
pencenter, B, =1, aj =-0498, B, =093, «=-0926

N* 1 2 3 4 5 6
Bro 0100 | 0120 | 0128 | 0129 | 0130 [ 0200

R, /P{ 1103 ] 1133 1176 | 2981 | 3035 | 095*
o 508 | 821 | 1356 | 6268 | 4329 | -1824
a i

Symbel * indicates data agreement

5. Conclusion

The calculated trajectories are based on force law (1) which
was derived from the empirically established laws of electrody-
namics The numerical solutions were derived on the basis of
fundamental physics, logic and mathematics grounded in the
saientific method The results agree with observed phenomena
Therefore, two particles interacting under electnical forces wall
move along the trajectories presented in this paper If gravita-
tional mieractions are propagated with the speed of light, then
two mteracting point masses will move along these trajectories

6. Acknowledgment.
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Appendix: Asymptotic Solutions
1. Solutions in the Vicinity of R =1

The radicand m (9) will be denoted by fAIR?) We shall ex-
pand AR?)n the vicinity of R% =1 witha Taylor series

f"(l)

AR = fil)+ FAXRE - 1)+ ~12% 4. (2
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Owing to the small difference between R? and 1, we shall limut
ourselves to terms of second order According to (9) the derva-
tive 1s of the ferm

3
S %’4—“1— ﬁi)exp[%lﬁf,[l /-JT?'E ~p3 - l,.Jl—_g';]]x

T

Subshtuting the derivative into (1a), and AR®)1nto (9), we write
integral (8) as follows

-IE -1
) g=qL+ay I{1-P2 HE Ez_l] iR
1

We get Eq (12) as a result of integrahon  Since the exact solution
when 3, =0 1s represented by Eq (11), Egs (11) and {12) were
compared al different values of &t). The companison at the point

R = 1.001 showed agreement to the third decimal place.
In the hmiting case, when By =B, the fust derivative ap-

proaches zero, f(1)—0. Therefore to speaify {12), it 1s neces-
sary to obtain the second dervative. Upon differentiating the
[irst dervahive we get

d?fid(R*)? = -2p% / R}

R T

4

(1 —ﬁi)aexp[2alﬂi(1/-Jl~ Bz -1 f-JEZ _ggﬂ

At the sgular paint B, =B, Bp =B . when R =1, the second
derwvative will be (1) = "ﬁic(o.% +U-5ﬁ_,2,¢J and s fimute

Therefore 1 considerabon of accuracy where R? =1, the thud
term 1n (la) can be neglected and Eq (12) rema:ins vahd when

ﬂ'p = ch Bp = ﬁp:
2. Approximation at High Velocity

When B, =1, Eg (12) has a singulanty Thersfore, to find
increments of ¢ in the region 1€ R £1.001 we shall employ a
direct hne equation which according to Eq. (11) will at @ =0 be
R=1/cosgp Hence

¢ =arccos(1/ R) (3a)

With R=1001 and (p=447 %1072 (or (p0= 256°), the polar an-
gle for a particle moving near the speed of light changes from
2 56 with vanation of K from 1 to1 001

3. Approximation for Apocenter

For ellipsoidal trajectories, numerical mntegration of Eq (8)
was performed with small mmcrements of velocity on the order of
one part per thousand 1118 necessary 1o estimate the impact this

Vol. 13, No. 2

approximation has upon the polar angle of Eg {8) To this end,
the relative radius B will be expressed through velocity ©, .,
determined from (10} and normalized to parameters at the
pericenter The relative radius will be substituted in the classical
trajectory Eq (11} Hence we get

Ap= arccos({(txl +1)% - T /((11 + 1)) (4a)

In order to include the effect of relative veloaty B, we use Eq

(12) to determine an asymptotic solution for the pericenter [t 1s
easy to show that the apocenter asymptotic has an analogous
effect. But, for that case, the parameters were referred to the

transverse velocity at the apocenter U, and apocenter radius R,
which depend on B, =1, /¢ = IR, and @, =04 R, We
introduce the influence factor k as a ratio of angle ¢ evaluated
according to (12) to @ evaluated with B, = 0. Hence we get

k:J(liaIa}/[l +a1a/~Jl~BEJ {3a)

Multiplying (4a) by (3a) yields an approximation for the apocen
ter as

l+ey R,

Ap= = ==
Yl-bcclR,,f-Jlf[]i!Rf

(oty +1)2 - 52
arceos ; x (6a)
oy +1

Due to approximate nature of (6a) for hmitng trajectories when
Bz = Bpe, numerical caleulabons with subsequent incresse 1n v
have been done. In this case, the particle moves to the apocenter

with the final angle @
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The New Fundamental Trajectories:
Part 2 - Parabolic/Elliptic Tra]ectones

Joseph |. Smulsky
Institute of Earth's Cryosphere
Siberian Branch of Russian Academy of Sciences
P. O. Box 1230, Tyumen, 625000, RUSSIA; e-mails: smulski@ikz ru, jsmulsky@mail.ru

This paper considers two-bedy interactions, which depend upon velocity and distance between the bod-
ies. We use classical mechanics with constant mass and a force that depends on relative distance and velocity.
The possible range of trajectories is studied: at small speeds the trajectories become classical, while at large

speeds they become “relativistic’.

The results obtained provide mechanisms for trajectories at scales ranging

from the micro-world to the macrocosm. Part 1 presented Sections 1-6 with Figures 1-3 and Egs. (1-22), with
hyperbola-like trajectories. Part 2 considers parabola-like trajectories, ellipse-like trajectories, and trajectories

for repulsion interactions.

Key wards: force, motion, trajectories, kinematics, momentum, pericenter, apacenter, attraction, repulsion, el-

lipse, parabola.
7. Introduction to Part 2

Our investigations [1, 2, 3] have shown that the force F of one
point-charge ¢ acting on another charge g3 moving with veloc-
ity ¥ is determined by the relation

R(1-p%)
[R"‘ -(Exm"]m

A 92
e

F=

0]

where f=v/¢q, ¢ = c/‘{s—; ¢ is the speed of light in vacuum;
e and p are the dielectric and magnetic permeability of the me-
dium in which the charged abjects are located.

With small charge velodty B, the force (1) coincdes with
Coulomb's law. Butas the velocity increases, the force decreases.
And as the relative velocity between the charges approaches the
velocity of electromagnetic action (ff — 1), the force tends to zero
(except for B exactly perpendicular to R). At this great speed,
no action is exerted on such a body, and it is not accelerated.

According to (1) and Newton’s second law of, the accelera-
tion of one charge relative to another can be written as

d? R(1-p2
B oy ) @

4t R Gxm]

where |1 is the interaction constant; namely

By =g galmy +my)/emymy (3)

By solving Eq. (2) we obtained in (2] a trajectory in a polar
coordinate system as follows:

‘sz‘d_R?IEZGr (8)

;-
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where R=R/ R, is the relative radius, R, is the radius to the
nearest point of the trajectory (pericenter), at which also Vg =0,
U, =0, /v, is the relative radial velodity, v, is the transverse
velocity at the pericenter, Bp=v,/¢, ¢y =1/ Rp'ui is the
trajectory parameter.

In Part 1, Egs. (8-9) at o >—0.5 were integrated numerically
and found to produce hyperbola-like trajectories. Now the trajec-

tories at @y < -0.5 will be studied.

8. Parabola-like and Ellipse-like Trajectories

Figure 4 shows sub-luminal trajectories with o; =-0.5. In
the classical case (B, — 0), the trajectory at @; =-0.5 is para-
bolic. Here B, =v, /¢, where v, is the transverse velocity of
the particle at the pericenter. Even with B, = 0.1, trajectory 1 is
a highly-stretched ellipse. With an increase in speed B, the dis-
tance to apocenter R, decreases and the angular distance to
apocenter @ increases, and for the limiting trajectory & at
P e =0.866 it exceeds 2x. For this trajectory as well as for a
limiting trajectory 7 in Fig. 1, the angle is counted from
R=1.001. And in the region 1<R<1.001, ¢ . In this
case the particle is captured from the terminal region of space to
a circular orbit Trajectory 7 with P, =0.9 and Bg =02, on
which the particle speed tends to light speed at the pericenter, is
also presented here (see Fig. 4). This hyperbolic trajectory with
negative angle between asymptotes is similar to trajectory 6 in
Fig. 3. (In these cases of hyperbola-like trajectories, the notation
@, is the angle between asymptotes.)
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Thus with an increase in the particle velocity, the parabolic
trajectory transforms into an ellipse, in whach the pencenter turns
by an angle A per turn according to (21) The mimumum dis-
tance to the apocenter R, = 5456 R, 1s charactenistic for a limit-
ing trajectory  With even higher speeds, the trajectones become
hyperbolic, with ight speed at the pericenter

N\iz f
I7 i
sy =] 3 o
S
l / J /
= / =
; o ! .
-3 -2 i 2 3 4 .5
\\_, la
‘\uf_.

Figure4 The trajectories at ©; = - 0 5and with sub-luminal
speed at the pencenter (B, <P, )are trajectones 1-6

Table for Fig 4

No 1 2 3 ) 5 6 7
ﬂp 01 03 05 07 0g D B66 1o
a 001 009 | 025 049 | -064 -075 -09
Ea /ﬁrw | 236411 2574 | 2507 § 3728 1316 | 5456 | 0 195*
(Pg 180 2 1822 1868 | 2007 | 2243 | 383 6" | 7243

In the classical case (ﬂp — 0), the trajectonies at 0.5> 0y > 1

are elipses  Figure 5 shows the sub-luminal trajectories with a;
=-07 For B, = 0, the trajectory 1s an ellipse with radius of
apocenter R, =2.5R, and the angular distance to apocenter 1s
9o =180° As follows from Fig 5, at B, =0.1 the radius of
apocenter decreases, and the angular distance to apocenter 1s
Py =180 4> The eccentnaty of elliphical trajectones decreases,
and the turn of the apocenter increases with additional increase
n veloaty The apocenter of himiting trajectory 5 1s slightly per-
turbed, therefore, trajectory 5 does not differ appreciably from a
crcular orbit Trajectory 6, with hight speed at the pericenter ob-
tained at f;p = 0.8 and fgy =04, 1s shown here The interac
hon parameter in this case (- @) 158 B /Ry =112, 1¢, 1t exceeds
uruty and radius of pericenter R, 1s less than the gravitational
radius R; To determine the possible values of a, we make use
of the Part 1 Eq (17) with parameter ¢; Then for hmiting trajec-
tones (15) we obtan the dependence of the mnteraction parame
ter &, =0 with veloaty at the pericenter B . of the form

O = _zﬁf:c‘d 1= ﬁ,zuc (23)

It 15 easy to show that this expression has an extremum at

Bpoe= ¥2/3, and the hughest value of the interaction parameter
with respect to the modulus 1s @, = —4!'\/2_7 When la |5 a,l,
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so that R, <('J2_'7- /4)R,, trajpectories will already have Light
speed at the pericenter, and these trajectories are esther hyper-
bolic or termunal  Thus, one can armve at the following conchs-
sions 1) For an attracting center with radius less than gravita-
tonal radius Rg (the so- called ‘black hole’), the particles can
enter into the gravitational radius circle and do not fall on the
attracting center 2) Particles at the pencenter reach light speed,
and due to a decrease 1n action on them go to infinity (or to the
apocenter—for terminal trajectories) The only exception 1s a
parhicle for which the velocity vector 1s directed exactly along the
radius According to (5), with =0 and Ry — = we obtain

B =1 -(1-B)exp(-R, /B) (24)

In this case the particle will fall on the attracting center but 1its
velocity, as it follows from (24), wall be less than light speed
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Figure 5. The trajectonies at ¢; = - 07 and with sub-lurmnal
speed at the pericenter (B, < B, ) are trajectories 1-5

Table for Fig 5

No 1 2 3 1 5 6
B o1 03 s 07 0714 s
P
@ 0014 | -0126 | -0350 | -0686 | 0714 | -112
¥ 1031 | 0331*
B, B 2482 2334 1991 1220
o0 1804 | 1845 | 1975 | 3281 | 1340' | 4026
o

In the classical case (10) for the particle moving radially from

mfiruty, the speed 1s
B, = 1’;33,, +R, /R (25)

If the particle was 1rutally at rest (B,p =0) at mfimty, upon
reaching the radius R= R, its speed will be equal to hght
speed Since this movement 1s sumular for both electromagnetic
and gravitabional interactions, the value Ry 15 best referred to as

the light radius
Thus the results we denived indicate that for interactions
propagating with veloaity ¢, the altraching center at radius



May/Tune 2002

K< R, (a 'black hole’) draws matenal more weakly than the
classical attracting center — the action of which propagates instan-

N \«\\;’
XY

/

Figure 6. The trajectories with constant interachion parame-
ter @ =-0.3.

Figure 6 presents trajectories at constant characteristics of in-
teracting objects, ie. those with constant parametera =- 0.3. The
eccentricity of the elliptical trajectories, numbered 1-3, increases
with increasing speed at the pericenter B,. Then the trajectories
diverge and pass into the hyperbolic trajectories, numbered 4-6,
where the angle between asymplotes 9, grows with increasing
Bp. Atlarger speed at infinity B.. (trajectory 8), light speed is
attained at the pericenter, and the angle ¢, increases and tends
to /2 for light-speed trajectory 9. We note that at Bp=PBpe
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(trajectory 7), the angle between asymptotes 1s small because the

inteprabion was accomplished to R = 1.001.
For Fig. 7, the trajectonies of two-body interachons depend

upon parameters @ and B, as follows: curve 1—Eq. (15); curve
2-Eq. {22) at P,=PBsp =Bop;
G—hyperhola-hke; P—parabola-like; E—elhpse-like; C—finute
trajectonies which result in a circle; S—trajectones with hght
speed at the penicenter; N—absence of trajectories.

Classes of trajeclories:

o A A T A A W
« TN
NAURNRNR S 7
YON NN et
06— DA D AT i/'\?J ]
o]
LT E(\ B )
Y W N W W i W :
o\ s X 2 : N
Ty 0.2 0.4 0.6 0.8 B

Figure 7. The panorama of trajectories of two-body interactions
depending on parameters «; and f,.

Table for Figure 6. Trajectories with constant interaction parameter a = - 0.3.

No 1 ) 3 4 3 6 7 8 9
Bo 0.408 0.463 0.548 0,707 0.866 0.913 0,988 1o 1
oy -09 =07 ~0.5 -0.3 -032 018 ~0.154 -0.151 -0.15
T 1.036 2.074 157 0.488* 0.739% 0.809* 0.913* 0 968* 1.0%
o? 189.9 193.5 189.1 62.56 73.78 77.56 59,40 8272 90

Variation of trajectories for different oy and P is shown in
Fig. 7. Curve 1 from Eg. (15) limits from below, and on the right
the area of existences of trajectories with body velocity in the
pericenter less than light velocity. This curve gives multiple tra-
jectories ., which are bransient into circular orbit, f.e. on these
lrajectories the particle is captured on a circular orbit.

Curve 2, representing Eq, (22), detaches the hyperbola-like
trajectories from ellipse-like trajectories. Curves 1 and 2 intersect
at the point @; =-0.450764 and P, = 0.89264. The points of
curve 2 at 0 <, <0.89264 give the parabolic trajectories on
which the particle has zero velocity at infinity.

9. The Trajectories of Repulsion and
Full Period of the Trajectories

Figure B presents the hyperbolic trajectories when the inter-
acting bodies are repulsed. Calculations were performed al three
values of @; (0.3, 0.5, 1.5} and variations of B,. With an increase
in B, the half-angle between asymptotes @, increases and tends
to m/ 2 for the light speed trajectory. The interaction parameter
0y is positive for the repulsion trajectories and can be more than
unity. The particle velocity increases when it moves away from
the center.
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Some full-pened trajectonies are shown in Fig 9 Previously
(Fig 3), we studied half-periods of these trajectories Cyclical
trajectores 1 and 4 are apen curves Trajectory 1 (with jumps)
has three periods per turn, and trajectory 4 has three and one-half
turns per period Trajectory 6 traverses itself at a great distance
from the attrachng center  One sees that an error 1s possible 1f
one uses Coulomb’s law for calculating parameters of attracting
centers while measuring trajectory charactenstics  For example
(see trajectory 6), one can define a greater diameter of attractng
center than actually exists, or an actual mteraction of attraction
could be wrongly defined as an interaction of repulsion

¥
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Figure 8 Trajectones of Repulsion

Vol 13, No 3
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Figure 9 Trajectones for full period at hight velocity i the
pericenter Numbers of trajectories are m accordance with
Fig 3

Table for Fig 8 Trajectones of Repulsion

@ | 03 ] 03| 03 | 03] 07 07 07 15 15 15
Bo | 01 05 0o | 10 o013 05 09 01 05 09
o | oo6 | 015) 0486 | 06| 0014 | 035 ) 1134 | 003 | 075 243
Bre | 0126 | 061 | 0962 | 10| 01543 | 0707 | 0993 | 0198 | 0827 | 09999
e | 767 | 769 | 791 90 657 66 6 732 532 556 690

The results we obtamed should be compared and carefully
analyzed to comprehend their significance One may then see
that they can provide new mechamsms for understanding natu-
ral phenomena For example, based on the kinematics parame-
ters of a charged particle, the trajectories may describe existing
steady-state orbits of electrons in an atom, or the transition of an
electron from one orbit to another, or the capture of a particle ino
a nucleus or an atomic shell

1f one apphes these results to gravitation, 1t 1s seen that many
phenomena have the exact opposite effect of that predicted by
General Relabwity Theory For example, if gravitational effects
propagate at light speed, black holes” should not exist  If as-
tronomers discovered this, they would hkely conclude that grav-
ity propagates with infinite speed—or at least a speed much
greater than the speed of hght in vacuum

10. Conclusions

* The new force expressmion describes the electromagnetic inter-
actions of two bodies with small and hugh relative velocities

+ Small particles of the mucroworld, and large bodies of the
macrocosm (if the propagation of gravitatonal interaction 1s
equal to ¢1), are moving on the predicted trajectories

* For most of the twentieth century, the analysis of expenments
on the interaction and scattering of charged particles has been
based on classical trajectories Different kinds of elementary par-
ticles and their properties have been defined by the use of trajec-
tortes based en Coulomb’s law  However, trajectories of part:-
cles are better described by another law, so many conclusions of
modern physics for a host of elementary particles are suspect

* A new analysis of particle physics, based on real trajectones,
15 needed to draw correct conclusions from exishing experimental
data We will discover the real world only if particle experiments
(beginrung with Rutherford's experiments) are re analyzed with
assistance of the new fundamental trajectories
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Related Correspondence
Comment from the Editor to the Author

You said Eq (1) makes F >0 when f—1 Thiss certainly
true if B 15 not perpendicular to B But if they are perpendicu-
lar, then the right hand side of Eq (1) becomes ‘0/0' Approach

g the lumit, you have (1-B%)/(1-p2)32 Perhaps this ap-
proaches infiruty rather than zero What do you think, and how
does 1t affect your presentation?
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Reply from the Author

In 1968 | denived the force law (1) as a result of solving Max
well's equabons  Until 1994 T doubted the infinty of force when
p—1and B s perpendicular to R, and 1 made a lot of different
inveshigations When 1 had calculated the force with which
charged bodies of different forms act on a moving charged parts
cle, and when | had calculated utteraction of two charged part-
cles in different possible cases, | was convinced that infirute force
when B 1s perpendicular to B 1s not a mistake

If the charged body acts on a moving charged particle, the

distance R 1s perpendicular to B for a fimite number of body
points Therefore, the aggregate force of such a body will cer
tainly always be non infinite [f two charged pomnt particles
move under therr mnteraction, there 15 only one point on their
trajectonies where Bis perpendicular to B At this one point, for
B— 1 the force tends to nfimty But the charged particle moves
across the point in an infimitesimally small tme Therefore the
infirute force and infimte acceleration do not give infirute change
of veloaity or distance

Correspondence

Orbits Do Not Have Pimples (continued from page 46)
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C.K.W. Again

Even with no orbit pimples allowed, [ fear there are stll esh-
mation nisks to worry about Estmating gravitational delay re-
quires eshmating baseline delay, which requires an orbit model
Whether Newtoruan or Einsteiuan, the orbit model 1s certainly
punple-free, but 1t also mvolves parameters (in partcular, posi-
tions of everything at relevant times) that are estimated from
optical data. Ophtical data 1s subject to gravitatonal bending
When the gravitational delay on a signal from Venus 1s large, the
gravitational displacement on the angular positon of Venus 1s
strularly large This makes for a potential error on the estimated
hght-ray grazing-range-to-Sun, and hence an error on the light-
ray Venus-to-Earth range, and hence the baseline delay. Is Hus
potental error source consistently accounted for? Who knows, 1t
just 150t mentioned

Cynthia K. Whitney, Editor

Newton's Too-Special Law of Gravitation

Our expenence of gravitation 1s mited to sphenical bodies in
almost arcular orbits, often at very great distances Gravitation
creates spherical bodies, and the spherical form 1s also demanded
by Newton's law, which descnbes gravity by approximating
masses as points But this convement approximation does not
reveal much about the mecharusm behund grawvitabon, which
therefore hides its secrets behind sphencal symmetry and
mathematical simplicity

Newton's Law

Since Newton's law 1s valid only for sphencal bodies, 1t 1s of
mnterest to discuss mathematical descniptions that are vahd for
aspherical bodies. By considenng ideas presented in [1], we find
that 1t 1s also of interest to discuss gravitaton for very massive
bodies A third possible completion to Newton's law 15 a fimie
speed for the propagation of gravity

The following discussions are based on an assumption of ab-
solute space and time — independent of each other

Aspherical Bodies

Thought experiments can help us to find descriptions for the
aspherical case One method 1s to consider two sphencal bodies
to constitute one aspherical body The attraction between these
bodies also demonstrates gravitation's tendency to create one
sphere out of two Another way 1s to consider an asphencal
body to consist of an infinite number of infinitesimal parts,
whereby therr form does not matter Newton's law must be vahd
all the time when the body 1s put into many parts

The demands mentioned above can be fulfilled only if sum-
mation over a firute number of bodies 1s replaced by integration
over a large volume, where each volume element has a defined



