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Abstract—Gravitational interactions of /N bodies are considered, which form a structure distributed over a
sphere. A method and program for creating such structures are developed based on an exact solution to the
problem of the axisymmetric interaction of N bodies. Studies on creating the structures are conducted, and
their dynamics and evolution are investigated. On this basis, the dynamics and evolution of globular star clus-

ters are explained.
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1. INTRODUCTION

In contemporary astrodynamics, the statistical
approach to evolution of associations of stars is pre-
dominantly used. Based on several simplifications or
hypotheses, a gravitational potential of association @ is
introduced [1, 2]. The probability of finding a star at a
certain point in space and at a certain velocity is
expressed by the function of phase space density .
Since potential ® depends on the distribution of bodies
in space, then from the dependence of ® on v, different
(collisional, collisionless, etc.) equations of astrody-
namics are deduced. Then, a problem of statistical
astrodynamics is the selection of the function of phase
space density ¥ (using the astrodynamics equations)
such that it would yield potential ®, which could pro-
vide the observed parameters of the association of stars.

It is accepted that potential ® creates regular forces,
while impacts on each star from individual stars create
irregular forces. Therefore, the function of phase space
density v, defined in the first problem, should be
refined with allowance for action of irregular forces.

However, since several simplifications are intro-
duced in this approach, the star association, obtained
with distribution function v, should be verified by
numerical integration of differential equations of the
motion of all stars. As a rule, this verification shows
that the desirable aim is not achieved. As a result, dif-
ferent explanations are advanced and additional fac-
tors of action are introduced. Searching for them and
taking them into account generate new problems.

This study considers a deterministic approach
rather than a statistical one as applied to globular star
clusters. An association of stars is specified determin-
istically: each star has its own mass, radius, coordi-
nates, and velocities. The evolution of the entire asso-
ciation is studied as a result of solving differential

equations of motion of each star. With this approach,
a certain idea is necessary: how to specify parameters
(masses, coordinates, and velocities) of the associa-
tion of stars for the calculated motions of bodies of this
association to really represent the evolution of the
observed association.

Thousands of stars, which are included in globular
star clusters, are attracted to one another according to
Newton’s law of universal gravitation. Their existence
raises two questions. If all stars are attracted to one
another, then why they do not merge into one body?
This can be explained by the fact that in the velocity of
each star there is a component perpendicular to the
total force; therefore, the star’s motion occurs along a
curvilinear trajectory. As a result, all stars are in qua-
siperiodic motion. Precisely in this way, the planets
move around the Sun. Despite the fact that each
planet is attracted by the Sun and other planets, it can
forever revolve around the Sun in a quasielliptic orbit.

In the solar system, the planets move almost in the
same plane, and the orbits of the planets do not inter-
sect. However, in a globular cluster, the planes of the
orbits of the stars are located in space, and there are so
many of them that it would seem that collisions are
inevitable. As a result of collisions, the stars will merge
into a single star, while with close passes, they will be
ejected from the cluster. Therefore, with time the glob-
ular star cluster should disappear. However, they do not
vanish, and astronomers refer to them as the oldest
objects in galaxies. From here the second question
arises: why do globular star clusters exist for a long time?

To answer these questions, it is necessary to con-
sider the interaction of stars in the globular star cluster
and to study their movements. To specify coordinates
and velocities of stars, it is possible to take advantage
of the experience of creating structures with interact-
ing bodies that move periodically on the plane. For
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Fig. 1. Geometric characteristics of the planar single-layer
axisymmetric structure of N bodies with central body
mass mg and mass of each peripheral body m; = m: (a) ini-
tial location of bodies in variants I, 11, and III of spheri-
cally distributed structures (¢ ; is the polar angle of the
body m; from the x| axis); (b) initial location of bodies in
variant IV ((po’ ; is the polar angle of the body m; measured
from the pericenter of its orbit P, ;).

these structures, exact solutions to two problems of
gravitational interaction of N bodies have been
obtained. In the first problem [3, 4], around a central
body, N — 1 peripheral bodies are uniformly located
along the circle. In this structure, depending on the
velocity of peripheral bodies, they can move along an
ellipse, parabola, and hyperbola. If there is only radial
velocity, the structure, depending on the magnitude
and sign of the velocity, turns into one body or the
bodies in it, are removed to infinity.

In the second problem [5, 6], a multilayer rotating
structure on a plane is considered, which consists of
N, layers with N; bodies located on each of them. Due
to the variation in radii of layers and in angles of
mutual arrangement of the bodies in the neighboring
layers, a countless number of varieties of these rotating
structures can be created. In [3—6], the methods and
programs of creating the structures are developed,
while their dynamics and evolution were studied using
the Galactica system [7—9].

In [5, 6] the possibility of turning flat rotating struc-
tures into spatial ones due to the rotation of layers in
space is noted. In this study, a spatial structure is created
due to using results of the first problem. For this pur-
pose, in the single-layer axisymmetric structure, orbits
of the bodies are deployed successively in space.
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2. MAIN RESULTS OF THE PROBLEM
OF AXISYMMETRIC INTERACTION
OF N BODIES

In this problem [3, 4], N; bodies with a mass of
m; = m, are located axisymmetrically on a plane (see
Fig. 1a) around the central body of mass m,. Through
body m,, the x; axis passes. From it, polar angles @, ; of
the remaining bodies are counted:

(pO,i =(l_1)A(pn l:13 25"'7N3, (1)
where Ag = 21/ N;.

In polar coordinates r, ¢,, where r in Fig. l1a coin-
cides with x,, coordinates of body m; will be r;, @,,;. As
a result of solving the problem of Newton’s interaction
of bodies, the trajectory equation in the polar system
of coordinates is derived in the following form [3, 4]:

= R” ; )
(o, +1)cos @, —

where R, is the pericenter radius, i.e., a point in orbit
with the least distance to center O in Fig. 1;

o =w/(Ry;): (3)
W =-G (mo + m1f/v3)§ “4)
N;
fy, =025 1 (5)

& sin[n(i — 1)/ N5|

In Egs. (2)—(5), o, is the polar angle of body m,,
counted from its pericenter; o, is the trajectory
parameter; |, is the interaction parameter; and fy, is
the contribution of action of N; — 1 peripheral bodies
on one of them. Depending on trajectory parameter o,
the orbits of the peripheral bodies can be circles (o, =
—1), ellipses (—1 < o, < —0.5), parabolas (a,; = —0.5),
or hyperbolas (—0.5 < o, < 0). The time of body
motion along the trajectory also depends on o, [3, 4].

Let us write the other four orbit parameters of
peripheral bodies [3]: orbital period

po__ 2R, ©6)
v, (=20, — 1)
pericenter velocity

v, = J(u/ouR,) ™)

orbit eccentricity

e=—(1+1/oy), (8)
and semimajor axis of orbit
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3. GEOMETRIC CONSTRUCTION
OF A STRUCTURE OF N BODIES
WITH PERIODIC ORBITS ON A SPHERE

Beginning from the second body (Fig. 1a), the
plane of its orbit is turned around polar radius of the
body r, = x, by angle A8 together with all remaining
bodies with radii r3, 4, ..., ry,. Then, orbits of bodies

with r3, ry, ..., ry, are turned around radius r; of the
third body by the same angle. If these turns are per-
formed for all remaining peripheral bodies, then we
obtain a structure of N bodies with periodic orbits on
a sphere. Further on, we will call it a spherically dis-
tributed structure.

At the moment of construction, the bodies of an
axisymmetric structure (Fig. 1a) are at pericenters with
radius R, and they have only transversal velocities v,,.
Their radial velocities v, = 0. Figure 2 shows the initial
stage of structure construction. With body m,, coordi-
nate system x,y,z; is connected. Body m, in the x,0y;,
plane is shifted from body m, by angle

Ay = k,AQ. (10)

Coefficient k,, is introduced for the possibility of
varying the geometry of a spatial structure. We write
coordinates and velocities of first body m, in coordi-
nate system x;y,z;:

X =Rp; ¥ =0, 2, =0; (11

Vel = 0; Vol = Ve Vo1 = 0.

In expressions (11) the first index “1” denotes the
number of the coordinate system, while the second
index “1” denotes the body number. With second
body m,, we connect coordinate system x,,z, (Fig. 2).
It is turned around the x, axis by angle

A8 = ki, AQ. (12)

Coefficient k,, is also introduced for varying the
spatial structure geometry.

Using angles Ay and A, expressions for coordi-
nates x; ,, ¥ 5, 21, and velocities v, | 5, v,,1 5, and v, ; , of
the second body are written in coordinate system
x,y,z, of the first body. For the third body these trans-
formations are executed in coordinate system x,y,z, of
the second body. As a result of this successive consid-
eration, transformations for the /th body from the
coordinate system of the ith body to the coordinate
system of the (i — 1)th body are obtained [10]:

X;_1; = X;; COSAY

13
— Y sSin Ay cos AB + z;, sin Aysin AB; (13)
y,-,u = x,-,, Sln Aw (14)
+ y;, cos Ay cos AB — z;, cos Ay sin AG;
Ziyy = iy sin 0+ z;, cos A6. (15)
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Fig. 2. Initial stage of construction of the spherically dis-

tributed structure: orbital planes of bodies from m, to my,
are turned by angle A® about the Ox, axis that passes

through body m,.

Similar expressions describe transformations for
velocities. In Egs. (13)—(15), for each index /, begin-
ning from 2 to N; — 1, the coordinates of bodies from
3 to NV, are presented in the coordinate system with a
number that is one less. Therefore, by Egs. (13)—(15),
for a body with N;, (N; — 2) transformations should be
performed, for a body with (N; — 1), (V; — 3) transfor-
mations should be executed, and so forth, up to the
body of / = 3 with a single transformation. Then, the
3D-rotated coordinates and velocities of all bodies will
be expressed in coordinate system x,y,z;.

4. STRUCTURE CONSTRUCTION PROGRAM

This algorithm of structure construction (at first
sight, very simple) includes some nontrivial problems.
It is implemented in the SphDsSt4.for program [10].
The program consists of three parts: (1) reading initial
parameters; (2) constructing a spherically distributed
structure; and (3) creating the input file for the Galac-
tica system.

The main initial parameters are read from the
SphDsSt4.dat data file [10]. In this file, the structure
parameters are specified: NV; is the number of periph-
eral bodies; m,; is the initial total mass of the structure;
Pmo 18 part of mass m;, occupied by the central body;
Ag,, is the semiaxis of the initial orbit in astronomical
units (AU); e is the eccentricity of orbits of peripheral
bodies; k, and k,, are the coefficients of the initial
angles of the bodies with the structure construction;
and p, is the absolute density of bodies. It should be

noted that density p, of the bodies in kg/m? is required
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for calculating their radii. The radii of the bodies are
used in the Galactica system during the calculation of
their collisions. In the SphDsSt4.dat file, some other
parameters are also specified, which are necessary for
the Galactica system.

In the SphDsSt4.for program for bodies from /= 3
to N3, the body coordinates and velocities, according
to (13)—(15), are recalculated into coordinate system
x;7,12; of the first body using nested cycles. In this pro-
gram, the algorithms for constructing variants 111 and
1V, described below, are used.

Galactica [7, 8] makes it possible to calculate the
dynamics of a spherically distributed structure and to
study its evolution. Additionally, it is used in this study
to finish the structure’s creation. As a result of turns,
the structure will be created, in which bodies on the
sphere will be organized according to strict mathemat-
ical law (13)—(15). After their interaction for some
time, the bodies are distributed uniformly over the
sphere. For this distribution, only the Galactica sys-
tem is used.

In the input file for the Galactica system, dimen-
sionless quantities are used [7]. All body masses are
related to total system mass m, = mi. The time is
expressed in hundreds of periods P. For this purpose,
the time coefficient is introduced

k, =1/(100 P). (16)

It should be noted that period P is calculated in the
SphDsSt4 program according to (6). Geometric
dimensions in the Galactica system are related to
quantity

4,=(G- mss/k,z)w. (17)

In the Galactica system, differential equations of
body interaction by Newton’s law of universal gravita-
tion are integrated. In dimensionless form, e.g., for the
X projection, they look as follows:

d2xj _ _imok(xj —Xk) (18)
de k#j I'j

x W

where x; = x¢;/A,, is the dimensionless coordinate of
the ith body; x, is the coordinate of the ith body rela-
tive to the center of mass of the entire structure; m, , =
m, / m is the dimensionless mass of the kth body;j =
k=1,2,..,N;and N=N; + 1.

In the Galactica system, a high-accuracy integration
method is used [7]. In respect to solar system dynamics,
the Galactica-system accuracy exceeds the accuracy of
NASA programs by orders of magnitude [9]. The
Galactica system with a set of necessary means for solv-
ing problems is freely available at http://www.ikz.ru/
~smulski/GalactcW/. Its description is presented in
the file GalDiscrp.pdf in Russian, and in English,
GalDiscrpE.pdf. The SphDsSt4 program, data file
SphDsSt4.dat, and the mentioned files of structures
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are presented at http://www.ikz.ru/~smulski//Data/
SphDsStr/.

5. VARIANTS OF STRUCTURE CREATION

The above algorithm is the first variant (variant I)
of structure creation. This structure with N; =99, k, =
1.72, and k,, = 1 is presented in Fig. 3 in coordinate
system xyz, related to the first body, which was named
above as x,y,z;. The considered structures had the fol-
lowing dimensional parameters: the central body mass
is equal to the Sun’s mass, the mass of peripheral bod-
ies is equal to the mass of all planets, while the sphere
radius equals the semiaxis of Earth’s orbit. A period of
revolution of peripheral bodies under these conditions
is close to 1 year. As can be seen from Fig. 3, the bodies
are located along the circle in the upper hemisphere.
The line of their location twice rounded the upper
hemisphere and on the second revolution of the body
approached the bodies of the first revolution. A draw-
back of this structure is the fact that the bodies are only
in the upper hemisphere, and with successive revolu-
tions, on the line of their disposition, they may be
superimposed one on another.

In the second variant (II), the velocity vectors of
odd bodies, beginning from the third body, turned
downward (Fig. 2), i.e., A® < 0, while the velocity
vectors of even bodies turned upward. A view of
structure Il with &, = 0.8 is shown in Fig. 3. As can be
seen, the velocity vectors of bodies 98 and 99 intersect.
Therefore, the paired approaches and collisions of
neighboring bodies occur in the studies of the Galactica
system of structure interactions. After 100 revolutions of
bodies in this structure there were 51 collisions.

In the third variant (III), the velocity vectors of
even bodies not only turned upward by angle A6, but
also reversed direction. As can be seen from Fig. 3, in
structure (I11) with k, = 0.8, the velocity vectors of
neighboring bodies, e.g., 98 and 99, are directed
apart. Therefore, while interacting, these bodies
move apart. In this structure, there was no collisions
within 100 revolutions.

The third variant of the algorithm is presented in
the SphDsSt4.for program. As already noted, it is
based on the sequential rotation of the velocity vectors
of bodies of an axisymmetric structure. In this case the
bodies are located in the pericenters.

In the fourth variant, each ith body in its orbit is
located at its polar angle @, ;, according to Eq. (1). Fig-
ure 1b shows the position of body m; in its orbit. Polar
radius r; of the body is defined by Eq. (2). Its radial
velocity is [3]

Vs = v (0 + 1) = (04 + R, /7). (19)

The radial velocity is positive when the body moves
from the pericenter to the apocenter, and negative,
COSMIC RESEARCH  Vol. 57
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Fig. 3. Four variants (I, 11, III, and IV) of creation of the spherically distributed structure with N3 = 99 peripheral bodies (the total
structure mass m; = 1.99179 X 103 kg; central body mass my = 1.98912 x 1030 kg; peripheral body mass m; = 2.69596 x 10% kg;
circular orbit radius a = 149.598 million km; and period of revolution P = 0.99945 sidereal years). Body m is located on the x axis;
the velocity vectors of bodies 98 and 99 are shown with linear segments; arrows 1, 2, ..., 9 show a sequence of location of peripheral
bodies in variant 1V; a sidereal year is the period of revolution of the Earth around the Sun with respect to fixed stars.

when it returns to the pericenter. A transversal velocity
is written in form [3]
Vii =V, Rp/r;. (20)
Coordinates and velocities of body m; in coordinate
system x;y,z; with the x; axis, passing through pericen-
ter P, ; (Fig. 1b), will be

Xpi =HCOSQy;;  Vpi = h sin Qo5 Zpi = 0; (2D
Vipi = Vi COSQp,; — V,; SIN P ;; 22)
Vipi = Ve SINQg; +V,;€08¢y;; vy, =0.
COSMIC RESEARCH Vol.57 No.6 2019

As mentioned above, in the fourth variant on the ini-
tial circle (Figs. 1, 2), there are no bodies m;, but orbit
pericenters P, ; of the bodies m;. They are spaced on
the circle at intervals of Ay. With the orbit turned by
angle AO, the pericenters will be located on the sphere,
while proper bodies m; will be located on their orbits at
the angular distance from pericenters @, ;. In this case,
velocities of bodies m; also are related to their pericenters
by expressions (22). Therefore with orbit turns, coordi-
nates and velocities (21)—(22) will be transformed,
according to Egs. (13)—(15), from the coordinate sys-
tem of the ith orbit to the (i — 1)th orbit. The entire algo-
rithm is presented in the SphDsSt4.for program.
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By the fourth variant (IV), the structure was cre-
ated with N3 =99, k, = 1.72, and k,, = 1 (Fig. 3). The
bodies along the disposition line on the sphere, begin-
ning with the first one on the x axis, start to bend
around the upper hemisphere (arrow /) from the front
and stop bending at backside 2. Then, they go to the
front of lower hemisphere 3 and pass it below 4. Next,
they go over the front of upper hemisphere 5and go over
the backside of lower hemisphere 6. Then, they appear
on upper hemisphere 7; at the top, they pass over back-
side &, while at the bottom, they go out on front 9 and
thus the position of body 99 ends near the 1st body. So,
in this variant of the algorithm, the bodies occupy the
sphere along the line that made three turns.

When calculating the dynamics of this structure
using the Galactica system, it remained unchanged for
ten revolutions. After 100 revolutions, the bodies were
distributed uniformly over the sphere. This new prop-
erty of structure invariability during the ten revolu-
tions is of significant interest: is it possible to create a
structure that does not change for a long time?

6. DYNAMICS AND EVOLUTION
OF STRUCTURES DISTRIBUTED
OVER THE SPHERE

6. 1. Different Number of Bodies

The motion of bodies in structures was studied by
integrating the differential equations of their motion (18)
using the Galactica system. Structures with 2, 11, 99,
and 999 peripheral bodies were considered.

In the case of two peripheral bodies, revolving in
mutually perpendicular planes, the system was explored
for the time of 1000 revolutions. Planes of orbits vary,
and the orbital radius changes. After 500 revolutions, a
relative deviation of orbital radius o fluctuates in the
4th digit. Then it grows and, by the 1000th revolution,
reaches 18.7%. The orbital radius of the second body at
that time decreases by 10.8%.

This three-body system is asymmetric; therefore,
changes take place. In a symmetric system, when
peripheral bodies are in the same plane, the system
exists without change almost for an indefinite time.

The structure of 11 peripheral bodies, created by
variant III, remained unchanged within the entire
explored interval of 100 revolutions. By the 100th rev-
olution, the largest variations in the radius of orbits did
not exceed or = £0.06.

6.2. Elliptic Orbits

In the above structures, eccentricity e = 0. The
structures with elliptic orbits having eccentricity e = 0.3
were created. In the process of motion, the structure in
variant III increased and decreased in size, i.e., pul-
sated. By the 100th revolution, the bodies were distrib-
uted uniformly over the sphere, and pulsations of the
structure size had ceased. In variant IV, all bodies are
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initially distributed along the elliptic orbit; therefore,
this explicit pulsation is absent.

6.3. Different Masses of Bodies

The structures with different masses of peripheral
bodies were also considered. In previous structures, a
mass fraction of the central body was p,,, = 0.99866.
With an increase in masses of peripheral bodies up to
a half of the system mass (p,,, =0.5), the structure cen-
ter-of-mass considerably shifts away from the center of
body m,. Velocities of peripheral bodies at the moment
of structure creation diminish from 8.6 to 8 relative
units. However, due to large masses of peripheral bod-
ies, the approach of two of them occurs for time 7' =
1.4 x 10~* and the initial configuration of the structure
is violated. Here, T is the dimensionless time, the unit
of which is equal to a “sidereal” century, i.e.,
36525.636042 days. By moment 7= 1, i.e., by 100 rev-
olutions, there were 11 collisions in the structure, and
its size increased by 400000 times, i.e., it was
destroyed completely.

With the smaller mass of peripheral bodies (p,,, =
0.9), they were distributed in space for three revolu-
tions; in this case the system size increased not by
much. With further motion, the system size remains
unchanged up to 7" = 0.44. By 100 revolutions, three
collisions occurred in the system, and it considerably
increased in size.

In two previous structures with p,,, =0.5 and p,,, =

0.9, the integration step was AT =1 x 10~7. With a fur-
ther decrease in the mass of peripheral bodies (p,,, =
0.95), the structure was more stable, therefore the
integration step was AT =1 x 107°. In this structure,
by 100 revolutions, there were seven collisions; here,
one collision was with the central body, while four
bodies have spread far beyond the boundaries of the
structure.

At the moment of structure creation (Fig. 3), the
distances between the bodies are smallest. Then, when
bodies are in motion, they are distributed over the
sphere, and distances increase. Therefore, with large
masses of peripheral bodies, their interaction at first
will destroy structures, before the bodies are distrib-
uted over the sphere. Therefore, masses of peripheral
bodies were increased in the already created structure
after 100 revolutions. Coordinates of the new structure
remained the same, while velocities were multiplied by
coefficient k,,.,. This coefficient was defined as a ratio
of the peripheral body velocity (in the axisymmetric
planar structure with new masses) to the velocity in
the structure with previous masses. Thus, the struc-
ture with p,, = 0.5 was created. Its dynamics was

explored with the step AT =1 % 107 up to 7 =0.033,
i.e., for three revolutions of the peripheral body. For
this time there was only one collision of the peripheral
body with the central body, and the system size

COSMIC RESEARCH  Vol. 57
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increased to some extent. In other words, the stability
of this system considerably increased in comparison
with the previously considered structure with p,,, =0.5.

In the same way, the structure with p,, = 0.9 was
created. Its motion was considered with integration step
AT =1 x 10~¢ for T= 1 century. During this time, there
was a collision of body 85 with body 73, which did not
lead to structure change. However, an approach of body
79 with the central body resulted in considerable
changes. This body acquired great velocity and was
gjected from the structure. The central body together
with several bodies was also ejected from the structure
in the opposite direction. The structure with the
remaining bodies began increasing in size.

The mechanism of approach of the peripheral body
with the central body, with the successive ejection
from the structure, is considered in detail by the exam-
ple of Coulomb interaction of multilayer structures
[11—13]. This mechanism is valid also in the case
under consideration.

The performed studies with different masses of
peripheral bodies testify that with p,,, < 0.95, to create
a spherically distributed structure is problematic with
the given structure radius, which in terms of dimen-
sional quantities equals Earth’s orbit radius. For a fur-
ther increase in the mass of peripheral bodies the
structure radius should be increased.

7. DYNAMICS AND EVOLUTION
OF THE STRUCTURE OF 1000 BODIES

Main studies of structure dynamics and evolution
were performed with the total number of bodies equal
to 1000, which nears the number of bodies in globular
star clusters. As an example, Figure 4 shows the M53
globular star cluster in the Coma Berenices constella-
tion (https://ru.wikipedia.org/wiki/M_53). It is located
at a distance of 60000 light-years from the galactic
center and almost at the same distance from the solar
system.

In central regions of globular star clusters, the star
density is 100—1000 stars per cubic parsec (1 pc =
206264.8 AU), whereas in the vicinities of the Sun, it
is around 0.13 1/pc3, i.e., by 700—7000 times less.
Diameters of clusters are 20—60 pc, while their masses
are 10*—10° of the Sun’s mass. In the center of globular
star clusters, there are massive stars, with a mass of
approximately 10* and more of the Sun’s mass. Due to
a high density of stars, the close passes of stars and
their collisions frequently take place in clusters. With a
large magnification, as can be seen in Fig. 4, a globular
star cluster has no clear boundary and is a structure
with a gradual decrease in the number of stars with
distance away from its center.

A structure was created using variant III with
N;=999 and parameters presented in Fig. 5
(file StrD999c.dat). With this number of bodies, the
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Fig. 4. M 53 globular star cluster (or NGC 5024) in the
Coma Berenices constellation.

distances between them are small. For the first bodies,
planes of orbits also differ little, while velocity vectors
of neighboring bodies are oppositely directed. This
leads them into a collision. These problems were com-
puted with step AT =1 x 10~7. After 2000 steps, the
collision of body 2 with body 10 occurred. After the
removal of body 2 and new structure creation, this sit-
uation was repeated for body 4. Thus, by removing
bodies 2, 4, 8, 10, and 15 from the StrD999c.dat struc-
ture, the StrD994c.dat structure was created. The
motion of bodies of this structure was studied by the
Galactica system with step AT =1 x 10~".

Asthe bodies moved, their initial positions on two
circles (Fig. 5) changed, and the bodies were distrib-
uted more uniformly over the sphere. In this case,
collisions occurred between individual peripheral
bodies, and they united into a double-mass body.
One more body may join the double-mass body, and
the triple-mass body will be obtained. Additionally,
the peripheral body may collide with the central
body. Table 1 presents the collision history for the
explored period 7 = 1.65 century.

As can be seen from Table 1, the main collision
number k,,, = 40 occurred for the first five revolu-
tions, which amounts to 2 out of 3 collisions for the
entire time interval including 165 revolutions. In this
case, 32 double-mass bodies and 2 triple-mass bodies
were created. Here, four peripheral bodies collided
with the central body. For an accurate determination
the bodies with which masses formed the triple-mass
body and which collided with the central body, it is
necessary to carry out a logical analysis of these
results. In this case it is necessary to keep in mind that
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(b)

Fig. 5. Spherically distributed structure by variant I1I with N = 1000, k(|> =0.86, k(pv =1, R=1AU, P,;=1 year and with the central
body mass equal to the Sun mass: (a) projection onto a horizontal plane after the structure-motion calculation by the Galactica sys-
tem for a single time step (numerals show dynamical parameters of the structure and characteristics of computational process);
(b) view of the frontal plane in the coordinate system xyz (lines near bodies 1, 499, 500, and 998 show the velocity vectors).

in the Galactica system, when two bodies collide, the
number of the one which had a larger mass is assigned
to the created body, while the mass of the one which
had a smaller mass is put to zero. Therefore, here, col-
lision number %,,, is determined by the number of
bodies with zero mass.

Over the next 5 years, as can be seen from Table 1,
five collisions occurred. In this case, a single triple-
mass body created. For 5 years, from 10 to 15 revolu-
tions, there was a single collision; from 15 to 20 revo-
lutions, three collisions occurred, while for 40 years,

from 20 to 60 revolutions, there were no collisions.
Collisions were also absent for the 10-year gap from 70
to 80 and from 90 to 95 revolutions. For the remaining
time intervals, the collisions occurred by ones and twos.

The structure created after 100 revolutions, with a
distribution of bodies over the entire sphere, is shown in
Fig. 6. The distances of peripheral bodies from the cen-
tral body predominantly differ from the initial distance
by no more than 3%. Their periods of revolution are
close to 1 year. No bodies were ejected from the struc-
ture. A single body alone, namely body 2, acquired a

Table 1. Dynamics of collisions of bodies of the spherically distributed structure StrD994c.dat for 165 revolutions:

ki, is the collision number; k,,,; is the number of double-mass bodies; k3, is the number of triple-mass bodies;
k0 1s the number of bodies collided with the central body

Parameter Parameter change in time 7'
T, years 5 10 15 20 60 65 70 80 90 95 100 |[105 |125 |150 |165
Kimp 40 45 46 49 49 51 54 54 55 55 56 57 58 59 61
Kom1 32 35 34 37 37 39 40 40 41 41 40 41 42 43 45
K3 2 3 4 4
Ko 4 4 4 4 6 6 6
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(b)

Fig. 6. Spherically distributed structure StrD994c.dat with N3 = 994 after motion for time 7'= 1.027 century. Distance L to body 2
is reduced by half in the figure. A period of revolution of body 2 is close to 1 year, (a) Projection onto a horizontal plane with com-
putation using the Galactica program. (b) View of the frontal plane in the coordinate system xyz (velocity vectors of bodies 2 and 994

are shown with linear segments).

great ellipticity of orbit, but its period of revolution did
not change considerably. The apocenter of its orbit is at
distance L = 2.8 radii of the structure (in Fig. 6a, dis-
tance L to body 2 is reduced by half).

The body distribution over the sphere, presented in
Fig. 6, already has formed by the 20th revolution.
Body 2 went beyond the boundaries of the initial
sphere for the first 5 revolutions. Therefore, further
development of the structure up to the 165th revolu-
tion can be considered already as a stable existence of
the spherically distributed structure. At times, colli-
sions of bodies occur, and they unite into a single
body. However, the longer the structure lives, the
lower the number of these collisions. In this structure,
bodies with neighboring numbers initially orbit in
opposite directions (see Fig. 5). However, there are no
collisions at counter velocities. All collisions occur
during the same-direction approach in the intersect-
ing orbits of bodies. Solely for body 2, probably, the
approach occurred at counter velocities, and, due to a
change in the velocity vector, it approached the central
body. After interaction with the central body, it trans-
ferred to the highly elliptical orbit.

The dynamics and evolution of two more struc-
tures were considered. The St4D999d.dat structure
with 999 peripheral bodies was created according to
variant IV with coefficient k, = 1.72. It was computed

for T= 1.9 century with step AT =1 x 10~7. With this
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coefficient k,, distances between the bodies are iden-
tical, except for bodies 999 and 1: the distance between
them is 4 times larger. By the end of five revolutions,
the bodies were distributed over the sphere, and there
were k;,,, = 158 collisions, which have led to the cre-
ation of bodies with double mass (k,,,, = 141), triple
mass (k;,; = 1), and quad mass (k4,,; = 5). By the end
of ten revolutions, parameters of collisions were: k;,,, =
160; k,,,, = 140; k3,,, = 1; k4,,; = 6. By the end of 100 rev-
olutions, these parameters changed insignificantly:
Kimp = 1715 kppyy = 139; K3y = 35 kgpyy = 7; kgpy = 1. Even
smaller changes occurred for the successive 90 revolu-
tionsto 7'= 1.9 century: k,,,,, = 173; ky,; = 139; k3,,; = 3;
K4y = 6, and kg, = 2.

In this structure after the 70th revolution, the body
with 6m, appeared, and there were no collisions with
the central body. In Fig. 7b, this structure is shown for
comparison with the previous structure (Fig. 7a) after
100 revolutions. As noted above, the structure (Fig. 7b)
formed during five revolutions, i.e., well before the pre-
vious one (Fig. 7a). In it, there were no collisions with
the central body and there were no large ejections of the
peripheral body.

The St4D999e¢.dat structure was created according
to variant I'V with further refinement. Coefficient &, is

selected such that the distance between bodies 999 and
1 could coincide with the remaining distances between
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Fig. 7. Spherically distributed structures with N = 1000, initially created by different variants, after 100 revolutions of peripheral
bodies: (a) variant 111 (see Fig. 6); (b) variant IV; (c) variant IV with refinement of a distance between bodies 7 and N;.

bodies. We will call this structure regular (Fig. 7c). It
is more stable than previous ones. By the end of five
revolutions, more than half the bodies were located on
the line of their initial creation. Nevertheless, by the
end of ten revolutions, all bodies were uniformly dis-
tributed over the sphere. The number of collisions in
this structure was an order of magnitude less. For
example, by the end of 5 revolutions, k;,, = 14 and
kyn = 14; by the end of 100 revolutions, k;,, = 26,
kym =24, and k;,,; = 1. In this case, from revolution 95
to revolution 160, there were no new collisions. Thus,
the initial regular form of structure creation subse-
quently leads to the more stable structure with the uni-
form distribution of all bodies over the sphere.

It should be noted that in the steady structures, all
bodies are in periodic motion. The period of motions
is the same as in the initial planar structure from which
the spherical structure was created. Even the period of
body 2 in Fig. 6 (with the highly elliptical orbit) almost
has not changed.

Comparing the shape of structures obtained (Fig. 7)
with the image of the globular star cluster in Fig. 4, the
following can be noted. Bodies in the structures are
located more compactly than in the globular star clus-
ter. It is explained by the “manmade” nature of the
structure formation: its initial organization reduces sev-
eral close encounters, which subsequently lead to the
larger spread of bodies over the space.

There are also differences between the structure
and globular star cluster, which are caused by the
structure model itself: it is the incomplete central sym-
metry of the structure and its sparseness in the central
region. In this case, in the less regular structure by
variant III (Fig. 7a), the central region is more filled.
The concentration of bodies at the center can be
increased by creating multilayer spherically distributed
structures. In multilayer structures, the mass fraction of
central body p,,, can be reduced. For example, in planar
15-layer structures [5, 6], it amounts to p,,, = 0.006.

As far as evolutions of the structure and globular
star cluster are concerned, then they are similar. These
objects can exist for a long time without change. At
times, approaches of bodies may occur, which will
lead to a change in their orbital radii or to their colli-
sion. The longer the structure exists, the smaller the
number of these approaches. This is proven by proper-
ties of globular star clusters, which were noted above.

8. SCALING THE STRUCTURES

As mentioned above, in the SphDsSt4 program,
files of structures with initial conditions, e.g.,
St4D999e.dat, using parameters m,,, 4,,, and k,, are cre-
ated in dimensionless form [7]. According to (17) these
parameters are related to one another; therefore, with
known A4,, and m,, the time coefficient is defined as

k, = \Gmy, | 4. (23)

In the St4D999e.dat structure with N = 1000 bod-
ies, system mass m , = 1.99179 x 10*° kg, central body
fraction p,,, = 0.99866, orbit semiaxis a, = 1 AU, scale
parameters were A,,, = 1.0973762 x 10" m and k,, =
3.1687536 x 10~1° 1 /s. The dimensionless semiaxis was
a,, = 0.0136323 and the dimensionless period of revolu-
tion of the peripheral body was P,, = 9.9920079 x 1073

We consider another structure with parameters
close to the globular star cluster: my, = 10°M, =
1.989118 x 10 kg, where M, is the Sun’s mass; the
orbit semiaxis a = 1 pc = 206264.8 AU = 3.0856775 %
10'® m. Let us find parameters at which the initial con-
ditions in the file St4D999¢.dat with dimensionless
semiaxis a,, and period P,, will correspond to this
structure. The new scale parameter is 4,, = a/a,, =
2.263501 x 10'® m. Time coefficient k, = 1.06980958 x
10~" 1/s is determined depending on new m  and 4,,
from Eq. (23).

All results, including Fig. 7, with integration of dif-
ferential equations of motion by the Galactica system
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with initial conditions of the file St4D999¢.dat corre-
spond to the new structure with parameters 4,, and k,.
For example, the period of revolution of peripheral
bodies in it

P=P,/k
=9.34x10" s = 296.198 thousand years.

In other words, if in the previous structure the
peripheral bodies revolved around the central body for
1 year, then in the new structure, it will for almost for
300000 years.

In the example, we considered a structure with a
new mass and a new size 2a = 2 pc. The results can also
be used to study the influence of the structure mass or
its size on its characteristics, if only the mass or size of
the system is varied. Therefore, the scaling algorithm
given here can be used to study gravitational interac-
tions in the structure in a variety of ways based on the
above derived solutions.

(24)

9. FURTHER STUDIES

The globular star clusters obtained in this problem
have a massive core and most stars are located in the
peripheral region. In the Universe, the most diverse
globular star clusters are observed. They are systemized
using different properties, e.g., according to degree of
star concentration toward the center, the globular star
clusters are divided into 12 classes: I, I1, ... XII, where I
refers to a cluster most concentrated toward the center
[1]. Probably, the globular star clusters obtained here
can be referred to as later classes.

The results require understanding and further
development. For example, periods of revolution of
bodies in the planar axisymmetric structure and in the
spherically distributed structure coincide. This indi-
cates that the forces of all bodies on one of the periph-
eral bodies coincide in these two structures. This result
is obtained based on numerical calculations. It is nec-
essary to prove it theoretically.

Using the algorithms obtained, it seems interesting
to deploy a multilayer rotating structure in space [5, 6].
This structure will simulate a globular star cluster
filled with bodies not only over the sphere but also
inside it, i.e., more closely to class I. In this case, bod-
ies on all layers have the same period of revolution.
Will it remain unchanged? Can regular motions of
bodies be created in layers?

The globular star clusters, more concentrated
toward the cluster center, i.e., more closely to class I,
can be created by successive combining spherically
distributed structures by the type of the “nesting
dolls”: the first structure is a central body for the sec-
ond structure; the second one together with the first
structure is the central body for the third structure,
and so forth. With the uniform distribution of bodies
over the sphere, their action on the structure, located
at the center, tends to zero. Therefore, the evolution of
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the central structure will not be violated by action of
bodies of the outer shell. This statement shows the way
for creating this volume-filled spherical structure.

The developed algorithm can be applied for creat-
ing the spherically-distributed Coulomb structures
[11—13]. Probably, creating and studying them will
bring us to understanding the structure of an atom.

With the statistical approach to the evolution of
associations of stars for creating a function of phase
space density, it is necessary to create a set of orbits
(orbit library), in order to achieve required potential ®
by combining them. This library of orbits can be filled
using the method of turning orbits in space, which is
considered in this study.

CONCLUSIONS

As a result of multiple interactions spherically orga-
nized structures with periodic motion of bodies can be
created. Despite the fact that orbits of bodies are located
in different planes, these structures can exist forever. In
the process of formation of the structures near-colli-
sions occur at which ejections of bodies from the struc-
ture are possible. When bodies collide of bodies, they
merge. However, the longer the structure exists, the less
these phenomena occurrs in it. With time, in this clus-
ter, the bodies remain with orbits in which no dangerous
approaches and collisions of bodies occur, while if they
happen, they happen very seldom.
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