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Abstract. We discuss here our results devoted to the problem of dynamical
evolution of the Solar System during large time intervals, in the order of
hundred million years.

Our interest to the problem is induced first of all by a very complicated science-
philosophical problem of the origin, evolution and stability of the Solar system. This
interest is dictated also by the climate investigation at our planet and its changes
under the influence of the Earth orbital and rotational motion evolution in the
framework of so-called Astronomical theory of the boulder periods [1].

According to the classical dynamics motion of bodies in some inertial frame of
reference is determined by the following system of 6n differential equations [2]
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where 7, is a radius-vector of the body m; with respect to the center of mass of the
system (for example, with respect to the barycenter of the Solar system).

For n = 11 (ten major planets, the Sun and the Moon) equations (1) are the
system of differential equations describing various motions in the framework of the
chosen model for the Solar system.

We have done a computational experiment using two variants of the initial con-
ditions for integrating the system (1). In the first and the second cases we used the
ephemerids DE 19 {3] and DE406/LE406 [4] of Laboratory of Jet Propulsion of the
USA.

To integrate the system (1) we have developed an algorithm and its implementa-
tion in the computer program named ” Galactica” [5]. The essence of this algorithm
is that the value of the calculated function at the instant of time t = to + At is
calculated by means of the Taylor series

T =To+ Z By A (2)

where :cék) is the kth order derivative at the instant of time tg, and an integer K is
the derivative highest order.
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A value of the velocity z’ (the first derivative of the coordinate z) is determined in
a similar way while an acceleration z” is calculated according to the formula (2). The
higher order derivatives :z:f,k) we have determined by means of direct differentiation

of the right-hand sides of the equations (1) in analytical form.
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Figure 1: The Mars orbit evolution during 50 million years: T' is a time measured in

million years; time interval between the neighboring points is equal to 10 thousand years;
e is an eccentricity, 7 is an inclination of the orbit plane with respect to equator plane
in epoch 1950.0 in radians; g is an angular position of the orbit ascending node with
respect to Oz axis in epoch 1950.0 in radians; ¢ is an angular position of perihelion in the
orbital plane with respect to the ascending node in radians; wy is an angular velocity of the
perihelion rotation measured in seconds of arc per hundred years in the time interval of 20
thousand years; average value of the angular velocity during 50 million years wp,, = 1687
seconds of arc per hundred years.
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Figure 1 shows evolution of parameters of the Mars orbit during the time inter-
val of 50 million years. One can distinctly see the second period of the eccentricity
change being equal to 7., = 2,31 million years when the lowest e = 0.0014 and the
highest e = 0.126 values of the eccentricity are observed. Oscillations of the inclina-
tion angle ¢ occur within the bounds of 0.288 and 0.521 radians and their interval
is 13.37 deg. Perihelion moves in the direction of the Mars orbiting the Sun with an
average for 50 million years period T),. Angular velocity w, of the perihelion rotation
oscillates about its average value wy,,. Comparison with a graph of the eccentricity
shows that return motion of the perihelion occur when the orbit eccentricity is close
to zero. The shown graphs demonstrate that amplitude and period of the Mars orbit
oscillations are stable, i.e., the Mars orbit motion is stationary.
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Figure 2: The Mars orbit evolution in time interval T € (—100, —50) million years.
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Fig. 2 shows evolution of the Mars orbit parameters in the time interval T €
(—~100, —50) million years. Comparing these graphs with those of Fig. 1, one can see
that character of the orbit parameters evolution during two successive time intervals
in 50 million years doesn’t change. Periods of oscillations of the eccentricity e, the
ascending node of the orbit ¢ and the angle ¢ of its plane inclination with respect
to the stationary plane of the equator as well as their amplitudes and period of
revolution T}, remain the same. Similar results have been obtained for the orbits of
other planets during the same time interval in 100 million years. This is evidence of
a stable character of the planets motion in the Solar system.

During the last three hundred years different aspects of the Solar system stability
were subjects of investigation of many outstanding scientists (I. Newton, L. Euler,
J. Lagrange, P. Laplace, K. Gauss, A. Poincare, A.M. Liapunov, O. Yu. Shmidt,
A.N. Kolmogorov, N.D. Moiseev, G.N. Duboshin and others) but in spite of their
efforts this fundamental problem has not been got a complete solution until now.

Considering motion of any celestial body in ” phase space” with ”slow” and ”fast”
variables, we have shown that all slow variables (major semiaxis, eccentricity, incli-
nation, longitude of the ascending node and angular argument of perihelion) behave
as conditionally periodic functions what corresponds to the known mathematical re-
sults on proving the averaging methods (N.N. Bogolyubov, Yu.A. Mitropolski, A.M.
Samoylenko, E.A. Grebenikov, Yu.A. Ryabov and others).

Numerical investigations we made show that during the last 100 million years
the Solar system is stable and there is no any tendency to some catastrophic changes
in the geometry and dynamics of the Solar system.
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