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1. INTRODUCTION

There exist space flight problems in which it is
required to launch a spacecraft into a preset orbit
around the Sun. For example, when a hazardous aster-
oid appears, multiple flights to it may become neces-
sary for reconnaissance and investigation of its physical
properties, and for taking some measures and executing
technological operations in order to prevent the hazard
[1]. In this connection, minimization of expenditures
for these flights is of great importance.

For studying the Sun and monitoring its influence
upon the Earth various orbits of spacecraft are consid-
ered. To make their launch cheaper, gravitation of the
planets neighboring the Earth is used. For example, in
[2] a spacecraft was considered reaching a distance of
0.18 AU (astronomical units) from the Sun in 5.8 years
with the use of five gravitational maneuvers near the
Earth and Venus. In other variants [3] with multiple
gravitational maneuvers a spacecraft approached the
Sun to distances of 0.137 AU and 0.14 AU in 1.7 and
2.5 years, respectively. In these variants the sustainer
rocket engines were used for correction of trajectories.

The problem of optimal flight depends on many fac-
tors whose role can be different in each particular case.
Some of them are obvious, while others can be revealed
only as a result of solving particular problems. In this
paper we consider the problem of optimization for a
spacecraft flight to the Sun. Some of the methods devel-
oped for this task can be used for other problems of
space exploration.

A possibility is considered to inject a spacecraft into
an orbit in the vicinity of the Sun, provided that the tra-
jectory is corrected using the attraction of planets rather
than cruise engines. In this case one can impart the nec-
essary initial velocity of flight to the spacecraft by
booster engines near the Earth. Further on, the entire

flight will proceed in the passive regime. Since no
cruise engines are required for correction, the launch-
ing mass of the whole system decreases, and the costs
of launching become substantially lower.

In order to realize such a variant of the flight, it is
necessary to have a reliable method of calculating the
flight trajectory. Only in the case when a realized trajec-
tory coincides with that calculated in advance, one can
abandon the cruise engines. Such a method of calcula-
tion of motion of the bodies under the action of gravity
forces was developed by us in order to study evolution
of the Solar System [4]. In addition, the motion of the
spacecraft proceeds along a complicated three-dimen-
sional curve, and it interacts with bodies at various relative
velocities both during the start and in the process of
motion. In order to achieve the desired results, one needs
to take into account all geometrical factors of motion with-
out exception. Since the solutions to a number of problems
will be required for choosing the initial conditions and
analyzing the results, we first consider them. 

2. DEPENDENCE OF APPROACHING THE SUN 
ON THE LAUNCHING VELOCITY

A spacecraft launched from the Earth has its orbital
velocity 

 

v

 

E

 

. In order that the spacecraft’s trajectory
should be directed to the Sun, one needs to reduce this
velocity, i.e., it should be launched oppositely to the
Earth’s orbital motion. If the spacecraft velocity rela-
tive to the Earth 

 

v

 

roc

 

 = –

 

v

 

E

 

, it moves to the Sun along
the radius. At smaller (in magnitude) velocities of the
spacecraft, its trajectory is elliptic, and in perihelion it
will reach the smallest heliocentric distance 

 

R

 

pr

 

. Let us
find this distance as a function of the spacecraft’s initial
velocity 

 

v

 

roc

 

 based on a solution to the problem of inter-
action of two bodies [4, 5]. We consider the motion of
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a spacecraft and the Earth under the action of the Sun
upon them. One can write the equation of a trajectory
of a body with mass 

 

m

 

, in the polar coordinate system
(see Fig. 1) at whose origin a body with mass 

 

å

 

 is
located, in the following dimensionless form

 

(1)

 

where 
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 is the dimensionless radius of the space-

craft’s position relative to body 
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is
the trajectory parameter with respect to the trajectory
initial point 
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 is the interaction
parameter; 

 

G

 

 is the gravitational constant; 
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0

 

 and 
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 are
polar coordinates of the initial point; 
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t

 

0

 

 and 
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 are the

transverse and radial velocities at this point; and 
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 is the dimensionless radial velocity. If one
chooses as a starting point the pericenter point 

 

r

 

0

 

 = 

 

R

 

p

 

,

then 

 

v

 

r

 

0

 

 = 0

 

,  = 0, and 

 

ϕ

 

0

 

 = 0. In this case, Eq. (1) is
simplified as

 

(2)

 

where 

 

ϕ

 

 is reckoned from 

 

R

 

p

 

.

Here, the parameter of trajectory  is designated as

 

α

 

1

 

 = 

 

µ

 

1

 

/(

 

R

 

p

 

)

 

, where 

 

υ

 

p

 

 is the spacecraft velocity at
perihelion.

Notice that in this case the radius 
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a

 

 of the apo-
center, velocity 

 

v

 

a

 

 at it, and period of revolution 
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determined for a closed orbit by the following expres-
sions

 

(3)

 

In addition, we write down expressions for radial ( )

and transverse ( ) velocities

 

(4)

 

and also for orbit eccentricity 

 

Â

 

 and the ratio of trajec-
tory parameters

 

(5)

 

Equation (2) at 

 

α

 

1

 

 = –1 represents a circle; at –1 < 

 

α

 

1

 

 < –0.5
we have an ellipse; 

 

α

 

1

 

 = –0.5, –0.5 < 

 

α

 

1

 

 < 0, and 

 

α

 

1

 

 = 0
correspond to parabola, hyperbola, and straight line,
respectively.

Let a spacecraft with mass 

 

m

 

 be launched at aph-
elion from the Earth (see Fig. 1) with the velocity 

 

v

 

roc

 

with respect to the Earth. Here, the algebraic value of
velocity 

 

v

 

roc

 

 is negative, if the spacecraft is directed oppo-
sitely to the orbital motion of the Earth. Then, the velocity
of the spacecraft at its aphelion is var = vaE + vroc, and the
radius of its aphelion Rar = RaE, where parameters with
indices “E” belong to the Earth, and “roc”and “r” refer
to the rocket (spacecraft). According to (2), we write down
trajectory parameters for the Earth and spacecraft as

(6)

where the interaction parameter µ1 ≈ –GM is assumed
to be identical for these two bodies, since their masses
are small in comparison to the solar mass.

Excluding µ1 from (6) we get

(7)

Now, having expressed the perihelion parameters with
the use of (3) through aphelion parameters, upon sub-
stituting them into (7) we obtain the equation for α1r,
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Fig. 1. The scheme of launching a spacecraft in the orbit
plane of the Earth against its orbital velocity vaE.



458

COSMIC RESEARCH      Vol. 46      No. 5    2008

SMULSKY

whose solution gives us the spacecraft’s trajectory
parameter

(8)

Taking into account that Rar = RaE, the relative radius of
spacecraft perihelion in accordance with (3) is written
as (in Rpra the additional index ‡ determines the analyt-
ical method of calculation):

(9)

Calculation according to formula (9) at α1E = –0.9942421
gives the following values (in astronomical units) for
the nearest approach of the spacecraft to the Sun Rpra at
its initial launching velocity vroc:

3. OPTIMAL START
FOR APPROACHING THE SUN

Under the action of all planets, the Sun, and the
Moon the spacecraft motion will be distinct from that

vroc, km/s –10 –15 –20 –25 –30

Rpra, AU 0.280125 0.140905 0.058634 0.014472 1.313 · 10–5

α1r

α1E

1 v roc/v aE+( )2 2α1E 1+( ) 2α1E–
---------------------------------------------------------------------------------.=

Rpra/RaE

1 v roc/v aE+( )2 2α1E 1+( )
1 v roc/v aE+( )2 2α1E 1+( ) 2α1E–

---------------------------------------------------------------------------------.–=

considered with the action of only the Sun. The influ-
ence of the Earth is substantial in the initial period of
the flight. This will result in larger values of Rpr as com-
pared to the values of Rpra calculated above. After-
wards, a strong influence can exert the planet near
which the spacecraft trajectory will pass.

For numerical integration of the spacecraft’s equa-
tions of motion jointly with 11 bodies of the Solar Sys-
tem the Galactica program, developed by us for study-
ing the evolution of the Solar System, is used. The
method of solution and evidence of its reliability are
presented in papers [4–8]. The program allows one to
solve the problems of interactions of bodies in the Solar
System according to the Newton’s gravity law with
high precision. In [4], 9 methods of controlling the
accuracy of the solution are presented, which are used
for proving their reliability. The structure of errors was
studied with respect to bodies, coordinates, velocities,
and directions. The errors decrease with increasing
orbit radius. The error in orbital direction is dominant.
Therefore, the relative variation of the angular momen-
tum δM of the entire Solar System is the most represen-
tative indicator of the accuracy. For example, when
solving the problem of motion of the Solar System bod-
ies over a period of 100 million years with a step of
∆T = 10–4 year and the double-length numbers (17 dec-
imal digits), the relative error of the angular momentum
of the Solar System was equal to δM = 8 · 10–11. Calcu-
lation with extended (up to 34 decimal digits) length of
numbers and the step ∆T = 10–5 will give the error
δM = 1.5 · 10–15 at computation over the 100 million
years period.

The spacecraft trajectory is calculated for several
years. In this period the momentum variations are equal
to δM ≈ 10–15 or δM ≈ 10–23 (for extended length of
numbers). The error of calculation of the spacecraft tra-
jectory is of the same order as the error of the orbit of a
celestial body with identical trajectory curvature at all
points of the orbit with exception of segments of
approaching another celestial body. As will be demon-
strated below, the accuracy control on these segments is
performed by comparing the calculated trajectory with
the trajectory determined analytically in the two-body
problem.

We consider the motion of a spacecraft with mass
m = 1000 kg and radius Rr = 5 m, launched from the ini-
tial height h = 300 km from the Earth’s surface in the
equatorial plane. The spacecraft’s location and velocity
are specified (as for all other bodies) in the barycentric
(with an origin at the center of mass of the Solar Sys-
tem) equatorial coordinate system.

When specifying the spacecraft velocity we will use
for reference the Earth’s velocity. According to Fig. 2

z
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γ t
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vE

Fig. 2. Angular parameters of the Earth and spacecraft in the
barycentric equatorial coordinate system: (1) is the celestial
equator plane; (2) is the plane of the Earth’s orbit (ecliptic);
A and B are the projections of the Earth and spacecraft onto
the equator circle; τ is the tangent to the equator at point A;
αE = γA, and αr = γB are the right ascensions of the Earth
and spacecraft, respectively; δE = EA and δr = RB are the
declinations of the Earth and spacecraft; and θE is the angle
of inclination of the Earth’s velocity vector vE to the equator
plane (to vector t').
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the angular parameters of the Earth’s locations can be
written through its Cartesian coordinates xE, yE, zE as

(10)

while the angular parameters of its velocity vector are
equal to

(11)

where αvE is the angle in the equator plane between the
projection of the Earth’s velocity onto this plane and
axis x.

When launching a spacecraft, one can vary four
angular parameters of its location and velocity vector,
αr, δr, θr, and αvr. However, it is difficult to find optimal
variants, because of nonlinear dependence of the final
results on these parameters. Having analyzed this situ-
ation, we choose the determining parameters that con-
trol the spacecraft position in mutually perpendicular
planes. These parameters are two angles,  and θr,
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which lie in mutually perpendicular planes and have the
values close to the angular parameters of the Earth:

(12)

at invariable δr = δE and αvr = αvE. We emphasize that
angle  does not coincide with right ascension of the
spacecraft, i.e., it is distinct from angle αr in Fig. 3.

In this case, α0 is an angle by which the spacecraft’s
right ascension at the initial point is ahead of the Earth’s
right ascension; while θ0 is the elevation of the space-
craft velocity vector above the Earth’s velocity vector
with respect to the equatorial plane.

Let us project positions of the spacecraft and the
Earth (see Fig. 3) onto the equator plane. In order to
avoid introducing extra parameters, we direct velocity
vrxy perpendicular to ER. Then we can write for projec-
tions of the spacecraft location:

(13)

According to Fig. 2, we can write the projections of the
spacecraft velocity as vrz = vrocsinθr and vrxy =
vroccosθr. Then, according to Fig. 3, the projections of
the spacecraft velocity can written in the barycentric
equatorial coordinate system:

(14)

Obtained initial conditions (13)–(14) for the space-
craft, necessary for integration of the equations of
motion, are determined by three parameters: the date of
launch T, advance of right ascension α0 of the initial
point, and excess over inclination θ0 of the velocity vec-
tor in the equator plane. Figure 4 presents the results of
integration of simultaneous equation of motion for the
spacecraft, planets, the Moon, and the Sun when the
advance angle α0 is varied. The spacecraft is launched
on November 22, 2001 (Julian date JD = 2452236.4).

Figure 4a presents the spacecraft trajectory 5
obtained by numerical integration. For the sake of com-
parison two analytical trajectories (6 and 7) are also pre-
sented. Hyperbolic trajectory 6 was calculated for interac-
tion of two bodies (the Earth and spacecraft) according to
formula (2). In this case, the perihelion parameters are
Rp = RE + h and vp = vroc, the initial angle is ϕ0 = , and
the interaction parameter is µ1 = –G(mr + mE).

Analytical trajectories 6 and 7 are used in order to
choose initial conditions and also to control the accuracy
of integrating the equations of motion of the spacecraft at
the segments when it approaches celestial bodies. We
have compared calculated trajectory 5 in the frame of
reference fixed to the moving Earth with hyperbolic tra-
jectory 6 at different computation accuracies. Discrep-
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Fig. 3. The projections of positions of the Earth and space-
craft onto the barycentric equator plane: x'Ey’ is the geo-
centric equatorial coordinate system; 1 is the Earth’s orbit
projection onto the equator plane; RE = ED is the Earth’s
equatorial radius; and H = DR is the initial height of the
spacecraft.
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ancy between the trajectories decreased with improved
the accuracy of computation, and at further improvement
of accuracy (for example, due to decrease of the step of
computing below ∆T = 10−5 year) there was no change in
the difference between trajectories. Therefore, all calcu-
lations were performed with this step. If necessary, the
accuracy of computing can be improved by eight orders
of magnitude by using the extended length of numbers.

Orbit 7 was calculated using expression (1), but for
interaction of the spacecraft with the Sun. The space-
craft position at the initial time was determined relative
to the Sun by the following parameters:

(15)

where parameters with index s belong to the Sun.
Relative velocity components are defined in the sim-

ilar way: vrsx; vrsy; vrsz; and vrs0. Then the angle
between radius rrs0 and velocity vrs0 was determined:

(16)

Using the known angle β the transverse and radial pro-
jections of the spacecraft velocity were calculated:

(17)

Then the trajectory parameter  = µ1/(rrs0 ) was
determined, where µ1 = –G(MS + mr), and the initial
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parameters   , and ϕ0, trajectory 7 in Fig. 4a was
calculated according to formula (1). The values of tra-

jectory parameters α1 and  initial position angle α0,
and radii of trajectory pericenters (Rp for trajectory 5
and Rpa for trajectory 7) are presented in the plots. All geo-
metrical dimensions are reduced to the characteristic size
of the Solar System, Am = 1.09796077030958 · 1013 m.

One can see in Fig. 4a that at the same initial veloc-
ity of the spacecraft vroc = –15 km/s trajectory 7
approaches the Sun almost twice closely than the real
trajectory: Rpa = 1.987 · 10–3 at Rp = 4.365 · 10–3. We
call trajectory 5, obtained as a result of integration of
equations, real, since multiple tests have shown: calcu-
lated motions of planets, the Sun, and the Moon coin-
cide with those observed [4, 7, 8].

The reason of more distant flyby near the Sun in
comparison with solution 7 of the two-body problem is
caused by two circumstances. On the one hand, the
spacecraft’s kinetic energy is consumed to overcome
the Earth’s gravity attraction. Therefore, not full veloc-
ity vroc = –15 km/s is used to reduce the spacecraft
orbital velocity with respect to the Sun. On the other
hand, in the process of interaction with Earth the trajec-
tory of the spacecraft is curved so that the vector of its
velocity is subtracted from the Earth’s motion ineffec-
tively. Therefore, the spacecraft trajectories in Fig. 4 are
considered at variation of the position angle α0. One
can see in Fig. 4i that the spacecraft approaches the Sun
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Fig. 4. Trajectory of spacecraft motion with a velocity vroc = –15 km/s relative to the Earth for launching on November 22, 2001 at
different initial advance angles α0. All trajectories are projected onto the ecliptic plane. The bodies at the time of launch are as fol-
lows: 1 is the Sun, 2 is Mercury, 3 is Venus, 4 is the Earth, 5 is the real orbit of the spacecraft obtained by integration of the systems
of equations of motion simultaneously with all bodies of the Solar System, 6 is the hyperbolic orbit with respect to the Earth (α1 =
–0.266), and 7 is the orbit of the spacecraft on which only the Sun acts. The numbers given in each plot a, b, c, d, e, f, and g from

top to bottom represent parameters α0,  Rp, and Rpa. Angle α is presented in radians.α1
0
,
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most closely at α0opt = 0.4. In this case (see Fig. 4d) the
spacecraft moving along trajectory 5 appears at the
least distance from the Sun Rp = 2.243 · 10–3.In addition,
hyperbolic trajectory 6 is seen to touch trajectory 5 at
the initial point, i.e., in this case, vector vroc of the
spacecraft’s relative velocity is effectively subtracted
from vector vE of the Earth’s orbital motion.

Influence of angle α0 was also studied at differing
velocities, and optimal position angles α0opt were estab-
lished. Figure 5 presents the spacecraft orbits for opti-
mal cases at three different launching velocities. With
increased velocity vroc the spacecraft approached the
Sun closer. Trajectory 7 (the three-body problem)
comes to the Sun almost twice nearer. Let us also note
that at optimal angles α0opt hyperbolic trajectories 6
become tangent to trajectory 5 at other velocities vroc of
the spacecraft too, i.e., optimal cancellation of the
Earth’s orbital velocity takes place in this case. Appar-
ently, when the hyperbolic trajectory is tangent to the
real one, the orbital velocity of the Earth will be also

used in the optimal way, if the spacecraft is launched in
its direction. Therefore, using this property one can
facilitate the problem of finding optimal trajectories.

4. OPTIMAL GRAVITATIONAL MANEUVER 
FOR APPROACHING THE SUN

In order to use attraction of celestial bodies for cor-
rection of the spacecraft trajectory, we consider the lim-
iting angles of deflection ϕb that can be imparted by a celes-
tial body. For a spacecraft having at infinity (r  ∞)
velocity v∞, we determine from expressions (2) and (4),
respectively, the angular position ϕa (reckoned from
perihelion) of the hyperbolic trajectory asymptote and
the expression for the velocity:

(18)

Then the angle of deflection of the velocity vector of
a spacecraft during its flyby near a celestial body is
written as

(19)

where the parameter of trajectory α1, which is defined
below and depends on v∞, is designated as α1∞. The tra-

jectory parameter α1 = µ1/(Rp ) depends on the peri-
center velocity (vp) and radius (Rp). We consider the
spacecraft flyby at the least distance from the center of
the body, equal to its radius Rb, i.e., Rp = Rb. The veloc-
ity vp at the perihelion we express through the infinity
velocity v∞ according to (18). Then, the trajectory

parameter looks like α1∞ = µ1(2α1∞ + 1)/(Rb ). After
this transformation we get the parameter of the trajec-
tory along which the spacecraft, whose velocity at
infinity is v∞, will move:

(20)

When the trajectory parameter α1∞ is known, one
can determine deflection angles of the spacecraft
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Fig. 5. The trajectories optimal in advance angle α0opt at various initial velocities vroc. The numbers from left to right and from top

to bottom present parameters α0opt, α1,  Rp, and Rpa. The remaining designations are the same as in Fig. 4.α1
0
,

Table 1.  Deflection angles ϕb  of a spacecraft near planets
(1–9), the Moon (10), and the Sun (11) at various spacecraft
velocities at infinity v∞

Body 
num-
ber

Deflection angles ϕb in radians at velocity v∞ in km/s

10 15 20 25 30

1 0.16687 0.0777 0.04445 0.02868 0.02
2 0.71367 0.38768 0.23721 0.15836 0.11264
3 0.78958 0.43828 0.2711 0.18207 0.12996
4 0.22441 0.10618 0.06113 0.03955 0.02763
5 2.48497 2.18311 1.90843 1.66402 1.45019
6 2.08196 1.65622 1.31571 1.05125 0.84827
7 1.53235 1.05012 0.73903 0.53784 0.40437
8 1.65055 1.16899 0.84303 0.62425 0.47512
9 0.79887 0.44461 0.27539 0.18509 0.13218

10 0.05489 0.02477 0.01401 0.00899 0.00625
11 3.07682 3.04447 3.01214 2.97986 2.94763
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according to (19). It is seen in Table 1 that the largest
and the smallest deflection angle ϕb for a spacecraft is
produced by the Sun and the Moon, respectively. With
increasing velocity the deflection angle decreases. In
order that the spacecraft could escape the Earth and
move away to infinity, its velocity should exceed the
parabolic velocity v2c = (2µ1/Rb)0.5 = 11.18 km/s.
According to Table 1, at this velocity only Venus out of
three bodies (the Moon, Venus, and Mercury) can give
an appreciable deflection during a flight to the Sun.
Therefore, below we consider the trajectory of a flight
to the Sun executed by a spacecraft with a gravitational
maneuver near Venus. 

Let us determine the launch time at which the space-
craft, upon reaching the orbit of Venus, will turn out to
have a rendezvous with it. Since the real trajectories of
bodies are not described by known functions, and they
will change at a new launch, we solve this problem by
the method of successive approximations. We take
advantage of a spacecraft launch on November 22,
2001 (see Fig. 4g). Let us determine the angular posi-
tions of the Earth (ϕE ) and Venus (ϕV) at the launch
time T0, and of the spacecraft (ϕr) at the moment T0 + tr

of crossing the Venus orbit, where tr is the time of the
spacecraft motion on the segment ER. The angles are
calculated using the coordinates of bodies in the eclip-
tic plane xeSye with the origin of coordinates at the cen-
ter of the Sun, for example, for the Earth
ϕE =  In the motion time of the space-
craft its position relative to the Earth is displaced by the
value ϕrE = ϕr – ϕE. If at the launch time T0 Venus was
ahead of the Earth by angle ϕVE = ϕV – ϕE, for the new
launch time T1 Venus should be behind the Earth by
angle ∆ϕVE in order that a rendezvous with the space-
craft take place. Then, the time of a new launch should
be displaced by the correction time

tc = (ϕVE + ∆ϕVE)/(ωV – ωE), (21)

where ωV – ωE is the difference of mean angular orbital
velocities of Venus and the Earth; ∆ϕVE = (ωV – ωE) tr.

Formula (21) is approximate, since motion charac-
teristics are different at all points of the trajectories of
bodies and at different parameters of spacecraft launch.
It is shown by numerical experiments that in some
cases the best result is achieved when the angular lag of
Venus is ∆ϕVE = ϕrE.

Taking (21) into account, the new launch time is
obtained T1 = T0 – tc = 0.5105 in centuries from Decem-

yEe/xEe( ).arctan

ber 30, 1949, which corresponds to January 20, 2001
(JD = 2451929.07). Since the period of revolution of
Venus with respect to the Earth is equal to 2π/(ωV – ωE) =
1.599 years, such launches of the spacecraft for rendez-
vous with Venus can be repeated with this periodicity.

In order to approach Venus at a preset spacecraft
velocity vroc, one can vary three parameters: launch
time T1, angle of advance α0, and angle of elevation θ0.
Calculations for the process of approaching Venus to
the least distance RrV were performed for several initial
velocities vroc and at one and the same time of launch,
T1. For every velocity, the initial angles of launch α0
and θ0 were calculated by the method of successive
approximations with the use of fitting functions. Final
values of the angles and parameters of obtained trajec-
tories are presented in Table 2.

Figure 6 demonstrates the spacecraft trajectories for
three values of starting velocities. One can see from
these plots that the radius of the spacecraft orbit
decreases after the interaction with Venus, and the aph-
elion of the spacecraft orbit does not reach the Earth’s
orbit. Thus, a part of the spacecraft’s kinetic energy is
taken away by Venus. When the initial velocity
increases, starting from vroc = –11.5 km/s, the perihe-
lion radius decreases, and at vroc = –15 km/s the space-
craft approaches the Sun to the distance Rp = 0.17 AU.
After the start, it reaches this position in 0.25 years, its
period of revolution being equal to 0.35 years. From a
comparison with the spacecraft launch without the
influence of Venus it is clear (see Fig. 4d) that the Venus
influence has allowed us to reduce the orbit perihelion
from 0.283 AU down to 0.17 AU. The values Rp = 0.17 AU
is close to the distance 0.164 AU which would be
reached by the spacecraft, if it were not required to
overcome the Earth’s attraction. Therefore, in this par-
ticular case the influence of Venus upon the spacecraft
compensated its deceleration by the Earth to a consid-
erable degree.

Thus, the gravitational maneuver near Venus
resulted in a decrease of the perihelion by a factor of
0.283/0.17 = 1.7. The results presented in Fig. 5 show
that at vroc = –15, –20, and –25 km/s, respectively, Rp =
0.283, 0.112, and 0.0345 AU. This allows us to deter-
mine that without gravitational maneuver near Venus
one can reach Rp = 0.17 AU at the starting velocity
vroc = –18.2 km/s. Thus, the use of a gravitational
maneuver near Venus will allow one to reduce the
weight at launch and the propellant consumption for

Table 2.  Parameters of solutions with the use of a gravitational maneuver near Venus: RrV is the least distance between the
spacecraft and Venus; RbV is the radius of Venus; tmin is the time of flight to the Sun; and Torb is the period of circumsolar orbit

vroc, km/s α0 θ0 α1 RrV/RbV Rpr, AU Rpra, AU tmin, year Torb, year

–11.5 0.46 –0.2199 –0.4518 –2.143 6.86 0.545 0.296 0.427 0.545
–12 0.51382 –0.3296 –0.4149 –2.098 3.14 0.369 0.303 0.36 0.44
–15 0.18736827 –0.1583 –0.2655 –3.538 22.4 0.172 0.162 0.25 0.35

α1
0
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imparting to the spacecraft the additional velocity
∆vroc = –18.2 – (–15) = –3.2 km/s. At lower velocities
of launch the gravitational maneuver near Venus will be
more efficient. One can see in Table 2 that in the cases
considered the spacecraft passes Venus at a distance
equal to several Venus’s radii. Therefore, the effect of
gravitational maneuvers can be increased due to a
closer passage near Venus.

The orbits presented in Fig. 6 can be used for injec-
tion of spacecraft without correction cruise engines. The
initial velocity |vroc| of the spacecraft can be only slightly
higher than the escape velocity v2c = 11.18 km/s. The time
of reaching perihelion is substantially less that in other
flight schemes [2, 3]. The small period of circumsolar
orbit will allow the spacecraft to perform almost con-
tinuous studies of the Sun.

CONCLUSIONS

1. Solutions to a number of problems are presented in
order to get analytical functions necessary for optimiza-
tion of a spacecraft flight at the moments of launching
from the Earth and approaching a celestial body.

2. The determining initial parameters of a spacecraft
are selected to search for an optimal trajectory.

3. It is established that for optimal use of the Earth’s
orbital velocity the hyperbolic trajectory of the space-
craft with respect to the Earth should be tangent to its
elliptic orbit relative to the Sun.

4. The use of the attraction of Venus allows one to
approach the Sun closer by a factor of 1.7 at one and the
same initial velocity of the spacecraft and at an identical
approach to reduce the initial velocity from –18.2 km/s
down to –15 km/s.
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