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ABSTRACT 
 
Substantiations of the theorem of angular momentum change and the law of 
conservation of angular momentum are considered. The change of angular 
momentum indicates an error in the method of calculating the dynamics of 
the Solar system. In the Galactica program, the change in dimensionless 
angular momentum over 160 years is 2 10-21, whereas in programs using 
SDM, this change is within 8 10-10. The changes in angular momentum of 
individual bodies are analyzed, including the planets, the Sun and the Moon, 
as well as their influence on the changes in angular momentum of the Solar 
system. The variations in angular momentum due to the orbital motion of the 
planets relative to the Sun over various time intervals are considered. The 
evolution of angular momenta of the planets over millions of years proceeds 
through their clockwise procession around the total angular momentum of 
the Solar system. The angular momenta due to rotational motion of the 
planets and the Moon are analyzed. 
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Those momenta are five orders of magnitude smaller compared with the 
angular momenta due to the orbital motion. In the Galactica program, the 
angular momenta due to the rotational motion are taken into account at 
considering the processes of collision of bodies and their fusion into one 
body. The evolution of angular momentum due to the rotational motion of 
Earth over millions of years is analyzed. That angular momentum also 
precesses clockwise, as well as the angular momentum due to orbital motion, 
yet relative to another direction. The angle between the latter direction and 
the direction of total angular momentum of the Solar system is 3.2°. The 
reported results illustrate the specific features in the evolution of the Solar 
system. They can prove useful in controlling and improving the methods of 
calculation. 
 

Keywords: differential equations, motions, angular momentum, orbits, rotation, 
axes, solution accuracy 
 

INTRODUCTION 
 
In mechanics, the interactions and motions of bodies are analyzed using two 

characteristics of their interaction: force and the moment of force. The 
translational movement of bodies is expressed as momentum, and the rotational 
motion, as angular momentum. The differential equations for translational motion 
stem from the fact that the presence of a force leads to a change in momentum. 
Similarly, the differential equations for rotational motion result from the fact that 
the presence of a moment of force leads to a change of angular momentum. In 
addition to the direct influence on rotational motion, angular momentum can also 
be used to control the translational motion and test the calculation methods for 
this motion. 

The results of the space studies of recent decades provide evidence that the 
calculated orbits of celestial bodies and trajectories of spacecraft may often be 
inconsistent with their observed motions. Similar evidence is provided by studies 
of the Solar System’s evolution over geological time periods. This evidence has 
led some researchers to conclude that the motions of objects in the Solar System 
are generally chaotic, suggesting a likelihood of a future collapse of the Solar 
System [1], chaotic motions of asteroids after planetary encounters [2], etc. Other 
researchers address these inconsistencies by introducing, in addition to the 
Newtonian force of gravity, other, weaker influences such as the Yarkovsky effect 
[3], dark matter [4], radiation pressure, etc. 

However, the indeterminacy of motion and the unclear nature of the forces 
contradict the spirit of mechanics. Apparently, before accepting the above 
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changes, researchers need to check, within the framework of mechanics, the 
reliability of the existing methods for calculating motions. One measure as to 
whether the solution of a mechanics problem is accurate is the observance of the 
laws of conservation. In this paper, we investigate the conservation of angular 
momentum for the entire system of interacting bodies by different methods in 
calculating the dynamics of the Solar System. 

 
 

THEOREM ON THE CHANGE OF ANGULAR MOMENTUM FOR A 

SYSTEM OF MATERIAL POINTS 
 
Consider a mechanical system Ss involving N material points (Figure 1), 

where the numbers of the points are i = k = 1, 2, …N. Each of the k points acts on 
point i with a force Fik

in, where k ≠ i. The superscript “in”  denotes the force of 
interaction of the material points included in the system Ss. Those forces are 
internal, and they are characterized by the fact that the forces of mutual action are 
equal in magnitude and opposite in direction: 

in
ki

in
ik FF

rr
−= .                                                (1) 

Expression (1) is known as the third law of mechanics. 

 
Figure 1. Interaction of bodies mi of system Ss by internal forces Fik

in and their 
interaction by external forces Fij

ex with bodies mj that are not included in the 
system of Ss. 

 
In addition, outside system Ss there are J material points (j = 1, 2, …J) (Figure 

1), each acting on points mi of system Ss with an external force Fij
ex, where the 

subscript “ex” (external) denotes the action produced by material points outside 
system Ss. 

The second law of mechanics, 
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F
dt

vd
m

r
r

= ,                                                   (2) 

defines the acceleration 
dt

vd
r

 of a point body with mass m acted upon by other 

bodies with a resultant force F
r

. Equation (2) is the differential equation of 
motion for a body with mass m. By summing the actions due to all material points 
(Figure 1) on the material point with mass mi, in accordance with law (2) we 
obtain the differential equation of motion of the material point: 

∑∑
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,                                   (3) 

where the first term in the right-hand side of equation (3) is the action of all 
internal forces on material point mi, whereas the second term is the similar action 
of all external forces. 

We sum equations (3) over all N material points of system Ss: 

∑∑∑
= ==
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ex
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i
i F

dt

vd
m

1 11

r
r

.                                    (4) 

In summing equations (3), by virtue of the third law of mechanics (1) the sum 
of all internal forces is zero. That is why all internal forces Fik

in are absent from 
equation (4). 

In mechanics, the moment of force F and the moment of momentum mv 
relative to some center C are considered as a product of h by force F or by 
momentum mv. Here, h is the distance from center C to force F or to momentum 
mv. In vectorial form, the moment of momentum for vm

r
 is defined as vmr

rr
× , 

where the radius-vector r
r

 directed from the center C to the point with mass m. 
The angular momentum vmr

rr
×  is also a vector. We denote this vector as 

)( vmmC

rr
; then, the angular momentum of the material point im  in Figure 1 is 

( ) iiiiiC vmrvmm
rrrr

×= .                                            (5) 

Point “C” in Figure 1 is chosen coincidental with the center of mass of system 
Ss. 

According to formula (5), the angular momentum ( )iiC vmm
rr

 is a vector 

perpendicular both to the velocity iv
r

 and to the radius-vector ir
r

 of the body im . 

Let us find now the relation between the angular momentum of a moving material 
point and the moment of forces acting on this body. To this end, we vectorially 
multiply the left and right sides of the differential equation of its motion (3) by the 
radius-vector ir

r
 of the point im : 
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∑∑
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Then, in accord with designation (5), we obtain the dependence of the angular 

momentum of the point im  on the moment of forces acting upon this point in the 

form: 
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We sum equation (6) over all N material points of system Ss: 
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The left-hand side of equality (7) is the derivative of the total angular 
momentum of system Ss relative to the center C 

∑
=

=
N

i
iiCC vmmM

1

)(
rrr

.                                          (8) 

The first term in the right-hand side of equation (7) is defined by the internal 
forces Fik

in. It can be shown that this term is zero, like in expression (4) on the 

summation of forces in (3) over all points im . Hence, with allowance for formula 

(8) the equation (7) can be written as 
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.                                      (9) 

Equation (9) presents the theorem about the change of the angular momentum 
for a system of interacting bodies. 

Providing that system Ss is acted upon by no external bodies, or the action due 

to such bodies is neglected, that is 0=ex
ijF
r

, then the right-hand side of equation 

(9) vanishes, and the angular momentum of system Ss remains unchanged, so that 
we have 

const=CM
r

.                                              (10) 

Equation (10) is the law of conservation of the angular momentum. 
In analyzing the dynamics and evolution of the Solar system, only the actions 

due to Solar-system bodies are to be taken into account. That is why the obtained 
solutions of the problems must comply with the law of conservation of angular 
momentum (10). 
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CHANGE OF ANGULAR MOMENTUM IN THE GALACTICA 

SYSTEM 
 
Studying the motion of Apophis for different initial conditions and by 

different methods, we found [5] – [8] that the uncertainty of the asteroid’s motion 
after approaching the Earth can be reduced by increasing methodological 
accuracy. Thus, we investigated the change of angular momentum of the Solar 
System in numerical calculations of its motion by two methods. The first method 
is traditional. It is based on the standard dynamic model (SDM) and is 
implemented in programs for calculating the DE series ephemeris, in particular 
the DE406 [9], and in the Horizons system [10]. The second method is 
implemented in the Galactica system [11] - [13]. It is based on the Newtonian 
interaction of point masses, and differential equations of motion are integrated 
using a new high-precision method. Information on the problems solved using the 
Galactica system can be obtained from: 
http://www.ikz.ru/~smulski/Papers/Galct11R.pdf. The Galactica system, with the 
functionalities necessary to solve problems, is freely available at 
http://www.ikz.ru/~smulski/GalactcW/. Its description is provided in the 
following files: GalDiscrp.pdf (Russian) and GalDiscrpE.pdf (English). The text 
of the program in Fortran was published in [13]. 

One important indicator for measuring the reliability of a solution of a 
differential motion equation is the dimensionless change of the system’s angular 
momentum. In accordance with (10), in the absence of external influences on the 
system of interacting material points, the angular momentum of its motion in 
projection on the axis z, remains unchanged: 

const
1

 )y  - v x(v m  M
N

i
ixiiyiiCz == ∑

=

,                           (11) 

where mi, xi, yi и vxi, vyi are the mass, coordinates, and velocities of the i-th body 
and N is the number of bodies in the system. 

Therefore, the dimensionless change of the momentum: 
δMCz = (MCz - MCz0)/MCz0,                                        (12) 

where MCz0 is the angular momentum at a certain point in time, must be zero; i.e., 
δMCz = 0. If it is not zero, we have evidence of errors in the numerical integration 
of the problem. 

The measure of the accuracy of δMCz in the integration of equations in 
Galactica and the relationship of δMCz with the errors in the coordinates and 
velocities are detailed in [14], [15]. While solving differential equations, Galactica 
calculates various reliability criteria for the computed results, including the 
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dimensionless change of the momentum, δMCz. Repeated studies for the Solar 
System have found that the projections of angular momentum onto the axes x and 
y behave similarly to the projection of δMCz. Since this projection is close in value 
to a change in the modulus of the momentum, δMC, below we consider δMCz. 

The angular momentum was calculated in Galactica for the planets, Moon, 
Sun, and Apophis in barycentric equatorial coordinates for the epoch 2000.0 [6] - 
[8]. The calculations were made with a step of dT = 10-5 year and an extended 
length of numbers (34 decimal places). The pattern of change of δMCz over 160 
years is shown in Figure 2a. It is evident that this value changes linearly with time 
at an average rate of dδMCz/dT = 1.5⋅10-21 cyr-1, where 1 cyr = 100 yrs. As already 
mentioned above, these results were obtained using numbers of extended length. 
When integrating the equation of motion using Galactica system with the double 
length of numbers (17 decimal places) over this time interval, the error of 
momentum δMCz varies in the range δMCz = ± 10-13, i.e., does not increase linearly 
with the increase in time needed to solve the problem. The algorithm of the 
Galactica system allows for error stabilization (if necessary) also in the case of the 
extended number length. 

 
Figure 2. Dimensionless change of angular momentum of the Solar System: (a) 
differential equations of motion of the Sun, planets, Moon, and Aphophis were 
integrated by Galactica; motion of the planets, Sun, Moon, and the three asteroids 
(Ceres, Pallas, and Vesta) were calculated using, (b) DE406, and (c) Horizons. 
The values of δMCz were calculated from (12) at MCz0 as of November 30, 2008. T 
is time in Julian centuries of 36525 days in a century, from the epoch of 
November 30, 2008. 
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CHANGE OF ANGULAR MOMENTUM IN THE SDM SYSTEM 
 
We studied the change of angular momentum using the DE406 ephemeris and 

the Horizons system for the planets, the Sun, the Moon, and three asteroids Ceres, 
Pallas, and Vesta relative to the center of mass of the Solar System. We calculated 
the projections of the angular momentum MCx, MCy and MCz onto the axes of the 
barycentric equatorial frame and angular momentum modulus MC. All the 
calculations were performed for several time points. The body masses for the 
DE406 ephemeris (the same as in the DE405 ephemeris) were taken from their 
description. 

The Horizons system also assigns a mass to each body. Since these masses 
differ from those used in the DE406 ephemeris, we also calculated the angular 
momenta with the masses from the DE406 ephemeris. Moreover, Horizons has 
Pluto’s coordinates until January 29, 2051. Therefore, we calculated the angular 
momenta without Pluto. However, it turned out that the pattern of change of the 
angular momenta in the two latter cases is virtually the same as in the first case. 
Thus, in our further work we used the angular momenta with the masses from the 
DE405 ephemeris. 

Table 1 presents momenta MCz calculated using the DE406 ephemeris and 
Horizons for a period of 160 years. For the DE406 ephemeris, the values of the 
momentum are unchanged to the 10th significant digit; in the Horizons system, to 
their 4th significant digit. The pattern of change for the projections of momentum 
MCx and MCy and total momentum MC is similar to the change in the z-projection 
of momentum MCz; therefore, in what follows, we consider, like in Galactica, only 
the projection of the momentum onto the z axis. 

 
Table 1. Angular momentum MCz of the motion of the planets, the Sun, the Moon, 
and three asteroids, which was calculated using the DE406 ephemeris and the 
Horizons system for different dates and numbers of Julian days (JD) with the 
masses from DE405 

Date JD 
MCz,⋅10+43 kg·m2/s 

DE406 Horizons 
Dec. 30, 1949 2433280.5 2.884103707433978 2.884087593847136 
June 28, 1969 2440400.5 2.884103708561933 2.884148971531926 
Nov. 30, 2008 2454800.5 2.884103707836915 2.884131506700124 
Nov. 30, 2030 2462835.5 2.884103708363054 2.883964569598089 
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Nov. 30, 2050 2470140.5 2.884103709521903 2.884202731605625 
Nov. 30, 2070 2477445.5 2.88410370733108 2.883923748548167 
Nov. 30, 2099 2488037.5 2.884103709125478 2.884144694607399 
 
Figure 2 compares the changes in dimensionless angular momenta calculated 

using Galactica, DE406, and Horizons. The changes in momenta are given with 
respect to momentum as of November 30, 2008. The first point corresponds to 
December 30, 1949. As already noted, in Galactica the angular momentum grows 
linearly with time, and its change over 160 years was δMCz = 2.4⋅10-21. In the 
DE406 ephemeris, δMCz changes nonmonotonically, and the range of the 
variations is 8⋅10-10, which is 11 orders of magnitude greater than the momentum 
in Galactica. 

The angular momentum in Horizons also changes no monotonically, and the 
variations in δMCz can be as large as 9⋅10-5. Hence it follows that, first, the 
changes in angular momentum in the DE406 ephemeris and in Horizons are many 
orders of magnitude greater than those in Galactica. Second, the changes in the 
angular momentum in Horizons are five orders of magnitude greater than those in 
the DE406 ephemeris. 

It should be noted that originally the studies based on the DE406 ephemeris 
and the Horizons system were conducted for the planets, Moon, and Sun, i.e., 
without the three asteroids. The change in momentum δMCz for the DE406 
ephemeris was greater by a factor of 2.5. The results in Table 1 and Figure 2 show 
a smaller change of δMCz because the DE406 based calculations took into account 
the three asteroids. Since the contribution of the asteroids to the change of the 
momentum δMCz is roughly 1.2⋅10-9, it was expected that consideration of the 
asteroids would not affect the change of momentum in Horizons. This conclusion 
was confirmed by the calculations: consideration of the asteroids did not affect the 
error in angular momentum obtained using the Horizons system. 

 
 

DYNAMICS OF ANGULAR MOMENTA OF SEPARATES BODIES 
 
To understand the reasons for the change of angular momentum, we studied 

these changes using the DE406 ephemeris for individual bodies: the planets, Sun, 
and Moon. We considered the dimensionless change compared with the 
momentum as of November 30, 2008. We studied all the three projections of the 
momentum: δMCx, δMCy and δMCz. Since their behavior is identical, we 
considered, like in the above, only the projection onto the z axis. The change δMCz 
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for these bodies over 160 years is shown in Figure 3 with a solid line. It is clear 
that the angular momenta of the bodies, like those of the Solar System in Figure 
2b, show oscillatory changes. The least dimensionless changes are observed for 
Pluto, Neptune, Saturn, and Jupiter. The Sun’s momentum shows the greatest 
change, and among the planets the greatest change δMCz is observed for Mercury. 

It should be kept in mind that, unlike in the two body problem, the interaction 
of more than two bodies results in a change of the angular momentum of each 
body. There is an ongoing exchange of momenta between the bodies. For 
example, it follows from the plots in Figure 3 that the values of δMCz for Jupiter 
(Jp) and the Sun (Su) change asynchronously, which is evidence of an exchange 
of angular momenta between these bodies. Thus, the problem is not that these 
momenta change, but how correctly the results of the integration reflect the actual 
changes in the bodies' angular momenta. A slight inconsistency between the 
calculated and actual values may lead, due to their summation, to a visible change 
of the angular momentum for the Solar System as a whole. 

 
Figure 3. Dimensionless change of angular momenta for Solar System bodies 
from Mercury (Me) to the Moon (Mo) and Sun (Su). The value of δMCz was 
calculated from (2) at MCz0 as of November 30, 2008: 1 using the DE406 
ephemeris and 2 using Galactica. 
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The contribution of angular momenta of individual bodies to that of the Solar 
System depends on their absolute values. Table 2 shows the momenta MCz0,i of the 
bodies, the range ∆δMCz,i of their dimensionless changes, and the range of the 
absolute changes ∆MCz,i. These values were found from the formula: 

∆δMCz,i = δMCzmax,i – δMCzmin,i;    ∆MCz,i = MCz0,i ⋅ ∆δMCz,i,              (13) 
where i is the number of the body and δMCzmax,i and δMCzmin,i are the maximum 
and minimum value of δMCz,i in the plots in Figure 3. 

It is evident that the largest absolute range ∆MCz,i of the variations in the 
angular momentum is observed for the Sun and Jupiter, and, as we see from Table 
2, their ∆MCz,i are similar. As noted above, their momenta change in antiphase. 
Therefore, the errors in the determination of their angular momenta may 
contribute substantially to δMCz,i of the Solar System as a whole. 
 
Table 2. Ranges of change of the angular momentum for the planets, Moon, and 
Sun relative to Solar System center of mass using DE406 for a period of 160 years 
from December 30, 1949. The dimensionless changes were determined with 
respect to November 30, 2008. The projections of the bodies’ angular momenta 
MCz0,i and their changes ∆MCz,i are given in kg⋅m/s 

Bodies’ 
No. 

1 2 3 4 5 6 

body Me Ve Ea Ma Jp Sa 

∆δMCz,i 0.0318 0.0132 0.00626 0.008 0.00172 0.000975 

MCz,i 
7.795378332 

⋅1038 
1.6744633 

⋅1040 
2.4522183 

⋅1040 
3.1839633 

⋅1039 
1.7690015 

⋅1043 
7.2208333 

⋅1042 

∆MCz,i 
2.4789303 

⋅1037 
2.2076076 

⋅1038 
1.5344546 

⋅1038 
2.56960663 

⋅1037 
3.0355753 

⋅1040 
7.0420275 

⋅1039 
Bodies’ 

No. 
7 8 9 10 11 

body Ur Ne Pl Mo Su 

∆δMCz,i 0.00231 0.000375 0.0000322 0.071 2.075 

MCz,i 
1.551594 

⋅1042 
2.3175955 

⋅1042 
3.6622486 

⋅1038 
2.9202579 

⋅1038 
1.5101363 

⋅1040 

∆MCz,i 
3.5870122 

⋅1038 
8.6886268 

⋅1037 
1.1792440 

⋅1034 
2.0741525 

⋅1037 
3.1328189 

⋅1040 

The same studies of angular momenta were conducted using the Galactica 
system. The dimensionless changes in momenta δMCz for the same bodies are 
shown in Figure 3 by a dashed line. Here the calculations were conducted with a 
smaller time interval, i.e., every five years. For planets with a large orbital period, 
beginning with Jupiter, the angular momentum is seen to change periodically. For 
the terrestrial planets, the variation periods δMCz are less than the five year 
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interval between the points in the plots. Therefore, one cannot see the variations 
of these periods. 

When comparing the dimensionless momenta δMCz in the plots in Figure 3, 
which were calculated using the DE406 ephemeris and Galactica, it is evident that 
their dimensionless variation ranges are the same. In some cases, when the 
momenta are calculated for one and the same time point, the values of δMCz are 
also the same. For example, at T ≈ 0.4 the dimensionless changes in the 
momentum have approximately the same values for the following bodies: Me, Ve, 
Ea, Jp, Sa, Ur, Ne, Pl, and Su. It is only for two bodies Mars (Ma) and the Moon 
(Mo) that they are visibly different. As is evident from Figure 2b, this difference 
for the DE406 ephemeris at T ≈ 0.4 may lead to the largest error in angular 
momentum for the whole Solar System: δMCz = 6⋅10-10. 

A good consistency in the changes of the momenta δMCz for the two programs 
over the entire range is observed for Uranus (Ur), Neptune (Ne), and the Sun (Su). 
At the same time, the momenta δMCz are observed to differ at around certain 
points in time: T = -0.6 and -0.4 for Mercury, T = -0.6 and 0.9 for Venus, T = 0.9 
for Saturn, and T = 0.2 and 0.6 for the Earth and Mars. These differences in the 
angular momenta for individual bodies may lead to the previously observed 
variations in the angular momentum for the whole Solar System in the DE406 
ephemeris. Thus, the comparisons of angular momenta for individual bodies 
(Figure 3) by different methods can serve as landmarks in searching for the 
reasons for errors in the less accurate program, i.e., the DE406 ephemeris. 

 
 

DIFFERENCES IN THE POSITIONS OF BODIES 
 
The calculated changes in angular momentum may indicate errors in the 

coordinates and velocities of bodies. We now try to estimate them. Let all bodies 
have the same dimensionless deviation δ for all coordinates and velocity 
components; then we can write the coordinate and velocity of the i-th body, i.e., 
for the projection onto the x axis, at any point in time: 

xi = xti (1 + δ);   vxi = vxti (1 + δ),                                         (14) 
where xi and vxi are the calculated values and xti and vxti the true values of the 
coordinate and velocity of the i-th body at this time point. If we substitute, 
according to (14), the coordinates and velocities into equation (11) for angular 
momentum and then into (12), we obtain 

δMCz ≈ 2 δ.                                                 (15) 
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It should be noted that in this case the calculation of the dimensionless change 
in momentum δMCz is based on MCz0 in (12), which is calculated from the true 
values of xti and vxti, etc. 

Thus, given that the dimensionless deviation of the coordinates and velocities 
is the same, it is half of the deviation of the momentum δ = 0.5 δMCz. 

To analyze the structure of the deviations, we studied the differences between 
the DE406 ephemeris and the DE405, DE403, and DE200 ephemeris and the 
Horizons system for two dates: December 30, 1949 with the Julian day JD = 
2433280.5 and December 30, 1999 with JD = 2451542.5. We determined the 
deviations of coordinates ∆xi, ∆yi and ∆zi and the velocities ∆vxi, ∆vyi and ∆vzi the 
deviations of the moduli of distances ∆r i and velocities ∆vi; and the angular 
displacement ∆ϕi in the plane xy and the dimensionless change in the distances 
between the positions of the body δr i. 

 
Table 3. Average dimensionless differences of the DE405, DE403, and DE200 
ephemeris and the Horizons system from the DE406 ephemeris. 

Source 
Epoch Dec. 30, 1949 Epoch Nov. 30, 1999 

δrm ∆ϕm δrm ∆ϕm 
DE405 1.0⋅10-11 6.8⋅10-12 1.0⋅10-11 8.2⋅10-12 
DE403 2.1⋅10-7 7.6⋅10-8 3.0⋅10-7 1.2⋅10-7 
DE200 8.6⋅10-7 3.3⋅10-7 3.2⋅10-6 1.6⋅10-7 

Horizons 1.9⋅10-7 1.5⋅10-7 1.1⋅10-7 5.2⋅10-8 
 
Table 3 gives two parameters of these studies, which were obtained by 

averaging over all bodies: δrm is the average dimensionless deviation of the 
distance between the bodies in different calculation programs and ∆ϕm is the 
average moduli of the difference of the angular distances between the bodies in 
the heliocentric equatorial frame. As is evident from Table 3, these values are well 
correlated between each other, with ∆ϕm being approximately half as large as δrm. 
A comparison of two different epochs 1949 and 1999 shows that the pattern of 
deviations is almost unchanged. 

It is seen from Table 3 that the lower the number of an ephemeris, the worse 
is its accuracy. The data of Table 3 also confirm that the accuracy of the Horizons 
system is worse than that of DE406 or DE405 ephemeris. Moreover, it follows 
from the analysis of the differences in distances ∆r and velocities ∆v that although 
their values vary in a broad range for different bodies, their dimensionless values 
δr and δv vary within narrower limits. The average value of the limits is 
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accurately reflected by the values δrm и and ∆ϕm. Therefore, the use of the same 
value for the deviation . of the bodies’ coordinates and velocities when deriving 
its dependence on the deviation δMCz of the angular momentum is justified. 

When studying the changes in angular momentum over 160 years, we found 
that the range of its variations is ∆δMCz = 8⋅10-10 for the ephemeris and ∆δMCz = 
8⋅10-10 for Horizons. Therefore, the dimensionless errors of the coordinates and 
velocities calculated using these systems should be expected to be of the order of 
4⋅10-10 and 4.5⋅10-5, respectively. This accuracy estimate was obtained for the 
“true” parameters of the motion of the bodies, which give a constant angular 
momentum δMCz. Naturally, this estimate differs from the deviations δrm in Table 
3, which were obtained by comparing different versions of the ephemeris. 

 
 

VARIATION OF ANGULAR MOMENTUM IN RECENT UPDATES 

OF DE EPHEMERIDES 
 
The results shown in Figure 2 b and c were obtained in 2011. After the 

publication of our paper [16], the accuracy of the Horizons system was 
substantially improved and made comparable with that of the DE406 Ephemeris. 
The DE Ephemerides are being permanently improved and get updated almost 
every year. For example, the DE405 Ephemeris was released in 1998, and DE422, 
in 2009. That is why we have performed a study of the variation of angular 
momentum in the DE422 Ephemeris. In Figure 4, the variation of angular 
momentum according to the DE406 Ephemeris (curve 1) is compared with the 
results of DE422 (curve 2). 

The graphs in Figure 4 show the variation of the projections of angular 
momentum, δMCx, δMCy, and δMCz, and also that of total angular momentum, 
δMC, for the same Solar-system bodies as those shown in Figure 2. That is why 
for the projection δMCz of the DE406 Ephemeris (curve 1) the graphs in Figures 2 
and 4 are the same. Evidently, the magnitude of the oscillations of projection 
δMCy are the same as that for projection δMCz. The amplitude of the oscillations of 
projection δMCx is several times greater than that for δMCz. Yet, since the 
projection of angular momentum MCx is much smaller than MCz, the intense 
oscillations δMCx do not affect the oscillations δMC of total angular momentum. 
That is why oscillations δMCz are almost perfectly coincident with oscillations 
δMC. This result confirms the fact that the choice of quantity δMCz as an indicator 
of the accuracy of calculation programs for motions was made quite adequately. 
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When comparing the deviation of angular momentum of the later DE422 
Ephemeris (curve 2) with DE406, we see that in some cases, the deviations of 
δMCy, δMCz and δMC are smaller in comparison with those in DE406. However, in 
general, over the entire interval of 160 years the magnitude of the deviation has 
even increased. This indicates that the DE Ephemerides have reached their utmost 
accuracy, and no future improvements will allow a reduction of errors at least by 
an order of magnitude. 

 
Figure 4. Dimensionless change of angular momentum of the Solar System: 
planets, Sun, Moon, and the three asteroids (Ceres, Pallas, and Vesta). 1 – DE406; 
2 – DE422. 
 

That is why we suggest that motions in the Solar system should be calculated 
using the Galactica program. The algorithm of this program has a considerable 
potential for improving the accuracy of calculation. Note that the actual error in 
calculating the position of bodies (or the difference of calculated position from 
actual position) is defined both by the starting data and by initial conditions. 
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Those data and conditions include the masses of bodies mi, their coordinates ir0

r
 

and velocities iv0

r
 at the initial time t0. Subsequently, these values can be refined 

using the Galactica system throughout the entire observational base. Since there is 
no limit for such a refinement, there exists a good prospect for the long-term use 
and further development for the Galactica system. 

 
 

VARIATION OF ANGULAR MOMENTUM OF PLANETS 

RELATIVE TO THE SUN 
 
Above, we analyzed the variation of the angular momentum relative to the 

center of mass of the Solar system. When analyzing the motion of planets, their 
orbits are considered not relative to the center of mass, but relative to the Sun. In 
the problem of two bodies, the Sun and a planet, the angular momentum of the 
planet relative to the Sun experiences no changes [17]. The latter is also evidenced 
by the second Kepler law: the radius-vector of the planet describes equal areas 
over equal periods. In theoretical mechanics, this law is extended to all cases with 
a central force, i.e. the force that passes through the center of action. 

The second Kepler law was established by Kepler, based on an analysis of the 
astronomical observations made by Tycho Brahe. This law reflects an 
approximate motion of the planets. It can be approximated with an ellipse, a flat 
and closed line. As a result of the joint action due to the Sun and other planets, the 
orbit of each planet presents an open spatial curve. Therefore, the angular 
momentum of a planet relative to the Sun undergoes variations. 

We used Galactica to study with more detail, the change of angular 
momentum for the planets relative to the Sun. The angular momentum in 
projection on the axis z is defined by equation 

)( SiSxiSiSyiizi y  - vxvm  M = , 

where xSi, ySi и vSxi, vSyi are the coordinates, and velocities of the i-th planet 
relative to the Sun. The periodicity in the change of coordinates and velocities is 
due to periodicity in the movement of the planets. Since the period P of revolution 
of the planets changes a thousand fold from Mercury to Pluto, the studies were 
conducted at time intervals divisible by the period P. Figure 5 shows its change 
δMz during one revolution of the planet. As is evident from the plots, the value 
δMz for all planets in this interval undergoes oscillatory changes with periods less 
that P (planet’s revolution). For the Earth (Ea), there are about 12 variations of 
δMz, which are due to the lunar influence. The least variation range ∆δMz ≈ 3⋅10-6 
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over the interval of one revolution is observed for Mercury, and the largest (if we 
ignore the Earth), for Jupiter: ∆δMz ≈ 2⋅10-4. Due to lunar influence, the value 
∆δMz = 10-3 for the Earth is greater than for Jupiter. 

 
Figure 5. Dimensionless change of projection of angular momentum relative to 
the Sun for planets ranging from Mercury to Pluto over one orbital revolution. 
The values of δMz were calculated at Mz0 as of December 30, 1949. Tn = T/P is the 
normalized time in orbital periods: Por = 0.241, 0.615, 1.000, 1.88, 11.86, 29.42, 
83.75, 163.72, and 248.02 are orbital periods in sidereal years for planets ranging 
from Mercury to Pluto. 

 
From Figure 5, it is evident that more regular oscillations δMz are exhibited 

by Earth and by the planets ranging from Saturn to Pluto. As already noted, the 
regular oscillations δMz of the Earth are due to the influence of the Moon. The 
regular oscillations δMz of the external planets are due to the action of the internal 
planets, of which Jupiter has the greatest influence. 
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Figure 6. 
Dimensionless change 
of average modulus of 
angular momentum 
relative to the Sun for 
planets ranging from 
Mercury to Pluto over 
300 orbital revolutions. 
The value of δMP was 
calculated for average 
momentum modulus 
MP0 as of December 
30, 1949. 
 

The range of 
change of the angular 
momentum relative to 
the center of mass, 
∆δMCz (this range is 
presented in Table 2) 
varies widely as well, 
from ∆δMCz = 0.0318 
for Mercury to δMCz = 
3.22 10-5 for Pluto. 
However, these values 
differ from the 
oscillations of angular 
momentum relative to 
the Sun. For Mercury, 
the oscillations relative 
to the Sun are 10000 
times smaller, and for 
Pluto they are 300 
times greater. This fact 
clearly indicates that 
the Sun, in its motion 
relative to the center of 
mass of the Solar 
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System, almost completely entrains Mercury into its motion. At the same time, the 
farthest planet Pluto is least susceptible to the Sun’s orbital motion, its motion 
relative to the center of mass of the Solar system being more regular. 

It should be noted that the dynamics of angular momentum δMz during one 
revolution (Figure 5) can be different in a different epoch. Thus, we studied the 
changes in angular momentum over large time periods. We considered the 
average moduli of angular momenta δMP during one revolution. These studies 
were carried out for each planet over an interval of 300 planetary revolutions. 
Figure 4 shows the changes in the average angular momenta for the same planets 
as in Figure 5. Since the interval between points in the plots in Figure 6 is one 
planetary orbital period P, the variation periods for angular momentum are equal 
to several periods P. For example, the least variation periods for the average 
angular momentum in Figure 6 for Mercury and Jupiter are 4 - 5 of their orbital 
periods P. As is seen from Figure 6, in addition to these short variations, there are 
also longer ones. And for Mars, Jupiter and Saturn one can see tendencies that 
mark the beginning of variations with a period of tens or hundreds of thousands of 
years. They are due to the long period variations of the planetary orbits [13] - 
[15]. 

For distant planets: Uranus, Neptune and Pluto, the oscillations of the angular 
momentum MP (Figure 6) were established with periods of 5.125 kyr, 2.603 kyr 
and 8.033 kyr, respectively. With these periods, the parameters of the orbits of 
these planets also fluctuate. This includes the eccentricity, the angle of perihelion 
and the orbital period of the planet around the Sun. Fluctuations of the orbital 
period are fully identical to those of angular momentum. The range of variations 
of average angular momenta in Figure 6 does not exceed that of variations during 
one revolution, which are shown in Figure 5. The reason is that the averaging of 
variation amplitudes during one revolution reduces their range. 

It should be noted that the high time resolution studies on angular momentum 
Mz using the Galactica system (Figure 5) show that the change δMz for individual 
bodies is smooth, i.e., without any jumps or breaks. Therefore, the difference 
between δMCz calculated using DE406 (Figure 3) and those calculated using 
Galactica is due to inaccuracies in the DE406 ephemeris. 

Thus, despite the various changes in angular momenta of the individual 
bodies of the Solar System, the angular momentum of the whole system relative 
to the center of mass C remains unchanged. The degree of change indicates the 
accuracy of the solution of equations describing Solar System dynamics. The 
Galactica gives the smallest change in angular momentum, and the Horizons 
system gives the greatest. The change of angular momentum of individual bodies 
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in the best program of calculation can serve as a benchmark to determine the 
causes of errors in those less accurate. 

 
 

EVOLUTION OF ANGULAR MOMENTUM OF THE PLANETS 

OVER MILLIONS OF YEARS 
 
While studying the evolution of the orbits of planets, we have established the 

fact that the angular momentum of the orbital motion of a planet relative to the 

Sun averaged over one rotation of the planet, pM
r

, was perpendicular to the mean 

plane of the orbit [15], [18]. The study of the evolution of the orbits of the planets 

over millions of years has shown that the vectors of the angular momenta pM
r

 of 

the planetary orbits precess relative to the angular momentum CM
r

 of the entire 

Solar system. Figure 7 shows a frame OxMyMzM whose axis zM is directed along 

the vector CM
r

. The differential equations of motion for Solar-system bodies are 

solved in the stationary equatorial frame Oxyz attached to the Earth’s equatorial 
plane from the year 1950.0. The xMOyM plane is inclined to the xOy equatorial 
plane at the angle 

iM = arccos(MCz/MC) = 0.40183, 
and the angle of the ascending node of the xMOyM plane is 

φM =  π/2+arctg(MCy/MCx) = 0.06809, 

where MCx, MCy and MCz are the projections of CM
r

 on the axes of the Oxyz 

equatorial system, and 222
CzCyCxC MMMM ++=  is the absolute magnitude of 

CM
r

. 

The average for period the angular momentum of a planet pM
r

 is 

perpendicular to the orbital plane of this planet. Therefore we introduce a unit 

vector S
r

 of the orbital axis, directed perpendicularly to the orbital plane. The 
projections of this vector are 

Sx=Mpx/Mp,            Sy=Mpy/Mp ,         Sz=Mpz/Mp,                              (16) 

where 222
pzpypxp MMMM ++= , 1222 =++= zyx SSSS , and Mpx, Mpy, and Mpz 

are the projections of the vector pM
r

on the axes of the equatorial baricentric 

coordinate system. 
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As it follows from Figure 7a, the projections of the orbital axis S
r

 on the axes 
of the inertial OxMyMzM frame are 

SxM = Sx·cosφM + Sy·sinφM; 
SyM = Sx·sinφM·cosiM + Sy·cosφMcosiM + Sz·siniM;                            (17) 

SzM = Sx·sinφM·siniM + Sy·cosφM·siniM + Sz·cosiM. 

Figures 7b and 7c show the evolution of the Earth’s orbital axis S
r

 in two 
planes, yMOxM and zMOxM. Figure 7b shows a segment of the trajectory of the end 

of the axis S
r

 over 400 ka. Starting from the time T = -400 kyr, the orbital axis 

rotates clockwise around the momentum vector CM
r

, i.e. against the orbital 

motion of the Earth around the Sun. Precession of the axis S
r

 proceeds with a 
period ТS = 68.7 kyr, the average angular velocity per revolution being ωS = -1885 
"/cyr (1 cyr – 1 century). The trajectory made by the end of the vector in the 
xMOyM plane is an open two-oval curve. This shape is due to the nutational 
oscillations, i.e. due to the changes in the angle ΘS (see Figure 7a) of the deviation 

of the orbital axis S
r

 from the momentum vector CM
r

, which is defined as the 

quantity 
ΘS = arccos SzM.                                           (18) 

 
Figure 7. Precession of Earth’s orbit axis S

r
 for 50 Myr. 1 Myr is 1 million years, 

and 1 kyr is 1 thousand years. 
a. Coordinate system: 1 is the celestial sphere; 2, 3 are Earth’s 1950.0 equatorial 
and orbital planes, respectively; 4 is Earth’s orbital planes at epoch T; 5 is Earth’s 
orbit at epoch T; 6 is the intersection of the moving orbital plane with the fixed 
equatorial plane. 
b, c. Precession of the Earth’s orbital axis in the plane yMxM (solid line for -400 
kyr) and in the plane zMxM (red dots for -50 Myr). The large dots are positions of 
Earth’s orbital axis at respective epochs. Data points are spaced at 10 kyr.  
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Precession of the vector S
r

 relative to the vector CM
r

 is characterized by the 

precession angle 
ψS = arctgSyM/SxM +0.5·π,                                  (19) 

which is reckoned (see Figure 7a) in the xMOyM plane from the xM-axis to the 
ascending node 4 of the Earth's orbit on the xMOyM plane. The angle ψS is not 
shown in Figure 7а. 

 
Figure 8. Precession of the planets’ orbital axes for one revolution about the Solar 

System’s angular momentum vector CM
r

 from -2.56 Myr to +1.2 Myr (arrow 

shows the precession’s direction); T = 0 corresponds to the 1950.0 frame and the 
path starting points, for planets from Mercury to Uranus; the paths for Neptune 
and Pluto start from past epochs. 

 
From Figure 7c, it is seen that the change of projections SxM and SzM occurs 

symmetrically about the ordinate axis, i.e. relative to the angular momentum 

vector CM
r

. In this case, the nutation angle ΘS varies in the range 3.9·10-4 <ΘS < 

0.0514 radian, the average value being ΘSm = 0.0226 radian. The maximum 
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deviation of the axis S
r

 from the angular momentum CM
r

 makes an angle of ΘSmax 

= 2.94º, and the range of nutational oscillations reaches 2·2.94º = 5.88º. 
The main period of nutational oscillations is ТΘ1 = 97.35 kyr. Since that 

period is longer than the precessional period ТS = 68.7 kyr, i.e. it does not coincide 

with the latter period. Then the end of the axis S
r

 in Figure 7b describes a double 
oval trajectory. Note that there is a second period of nutational oscillations, equal 
to ТΘ2 = 1.164 million years. 

So, the evolution of the Earth's orbital plane is due to the precessional motion 

of its orbital axis S
r

 around the angular momentum vector CM
r

 with a period ТS = 

68.7 kyr and due to the nutational oscillations of this axis occurring with a main 
period equal to ТΘ1 = 97.35 kyr. 

 
Figure 9. Precession of the orbital axes of the planets around the Solar System 

angular momentum vector CM
r

 from -2.56 Myr to +1.2 Myr. Large dots mark the 

positions of the axes at T0 = 1950.0. 

The orbital axes of other planets in the Solar system execute similar 
precessional rotations and nutational oscillations (see Figure 8). The orbital axes 
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of all the planets revolve clockwise around the angular momentum vector CM
r

, 

i.e. against the orbital motion. If the main period of nutational oscillations ТΘ1 
exceeds the precessional period TS and the nutational oscillations are significant, 
then the trajectory of the SyM(SxM) axis represents, as in the case of Venus, Earth 
and Mars, a two-oval trajectory. If the period of nutational oscillations ТΘ1 is 
several times shorter than the precessional period, then the trajectories of the axes, 
as in the case of Uranus and Neptune, are shaped as rosettes. 

It should be noted here that the trajectories in the graphs of Figure 8 are 
depicted with straight lines connecting the points. Since the interval between the 
points is 10 kyr, then for a small precession period like, for instance, for Jupiter 
and Saturn with TS = 50 kyr, the trajectories are represented by broken curves. 

Figure 9 shows the precession of the axes of the orbits over 3.76 million 
years. We see that, during this period, the orbital axes of all the planets, with the 
exception of Pluto, make several turns: from 75 turns for the orbital axes of 
Jupiter and Saturn to 2 turns of the orbital axis of Neptune. Since the amplitudes 
of the nutational oscillations of the orbits of Venus, the Earth, and Mars are 
significant, the trajectories of their axes fill the central part of the SyMOSxM plane. 
The smallest nutational oscillations are executed by the orbital axis of Pluto and, 
as a result, the trajectory of this planet turns out to be close to a circle. 

Shown in Figure 10 is the precession of the axes of the orbits in three-
dimensional form for the same period of time. In these graphs, the scale along the 
vertical axis is significantly increased. As it is evident from the graphs, the end of 

the unit vector S
r

 of the orbital axis for the first four planets describes surfaces 
convex at the center, and for the rest of the planets, annular surfaces. 

Consider now in more detail the precession of the orbits. The precession 
angle ψS is to be calculated by formula (19). For many planets, the changes of ψS 

are not monotonous and, along with a decrease with time T (the axis S
r

 rotates in 
clockwise direction), there are intervals with increasing angle ψS. However, as it 
is shown by the points in Figure 11, over a long time interval of 50 million years 
no visible precession irregularities are observed. Shown here are appriximating 
dependences shown with thin lines: 

ψSa = ψS0+2π⋅T/TS,                                         (20) 
where ψS0 is the value of the precession angle at the initial time T = 0; and  

TS are the precession periods of the orbital axes S
r

. 
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Figure 10. Precession of the orbital axes S

r
 of the planets around the Solar System 

angular momentum vector CM
r

 from -2.56 Myr to +1.2 Myr, in 3D. The vertical 

axis is shifted parallel to the vector M
r

, and the axes origin is shifted from the 
origin of coordinates OSyMSxMSzM. 
 

The precession periods are represented in Figure 11 with numbers. Evidently, 
the values of ψS and ψSa are coincident. From the presented data, it follows that 
the orbital axes of Jupiter and Saturn precess with the greatest velocity, and Pluto 
with the lowest velocity. For two groups of planets: Venus and Earth, Jupiter and 
Saturn, the rates of precession are almost coincident. We note once again that over 
small time intervals, the change in precession angles ψS differs from the linear law 
of (20). 

Recall that the orbital axis S
r

 is the non-dimensional vector of angular 

momentum of the orbit pM
r

 of Earth relative to the Sun. Therefore, it can be 

argued that the intricate behavior of Earth’s orbital plane is explained by simpler 



Joseph J. Smulsky 26

motions, the precession of Earth’s orbital angular momentum pM
r

 and its 

oscillations. 

 
Figure 11. 50 Myr evolution of the precession angle ψS relative to the angular 

momentum M
r

 of the Solar System for nine planets from Mercury to Pluto (1 to 
9), with the respective TS periods in Kyr. 

 
 

CHANGE OF ANGULAR MOMENTUM WITH REGARD TO THE 

ROTATIONAL MOTION OF BODIES 
 
In the foregoing, we considered the total angular momentum of bodies in the 

dynamics of the Solar System, which is induced by their orbital motion. The 
consideration of the angular momentum induced by the rotational motion of 
bodies would expand the possibilities of this approach. For example, in the Earth-
Moon system, one could trace an increase in the orbital angular momentum of the 
Moon due to the inhibition of the Earth’s rotation. Therefore it is of interest to 
consider the total angular momentum, taking into account the angular momenta 
induced by the rotation of bodies. These angular momenta are also called spins of 
bodies. The above discussed programs for calculating only orbital motion do not 
consider the spins of bodies. Therefore, at this stage a study on changes of angular 
momentum in the dynamics of the Solar System can only be performed for orbital 
angular momenta. 

It should be noted that the initial conditions in the Galactica system include, 
apart from orbital parameters, the radii of the bodies and the projections of their 
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spins. Therefore, if all of these parameters are specified for a problem of 
gravitational interaction of bodies, then solving this problem will give the 
dynamics of their orbital and rotational angular momenta. This analysis may cover 
collisions of bodies, their mergers into one body, collisions of the merged bodies, 
and other processes accompanying collisions. 

These processes are complex, and it is rather difficult to choose and develop 
algorithms to describe them. In this case, control over the measurements of the 
total (including the spins) angular momentum is the only reliable method to 
control the accuracy of the results. 

It should be noted that we consider the change of angular momentum in the 
dynamics of the Solar System, i.e., in theories describing the motion of the Solar 
System. A change of angular momentum in the Solar System depends not only on 
the orbital and rotational motion of bodies but also on other factors. The most 
important of them is orbital motion. In the future, with the increasing accuracy of 
the description of the first most important factors, the least important ones will 
also be taken into account. 

Below we give an estimate for the angular momenta induced by the second 
most important factor, i.e., rotational motion of bodies. If J is the axial momentum 
of inertia and ωrt is the angular velocity of rotation, then the spin of the body is 

Srt = J⋅ωrt ≈ 0.4 m R2⋅2π/Prt = 0.8 π m⋅R2/Prt,                                    (21) 
where m is the mass of the body; J = 0.4 m R2 is the axial momentum of inertia; R 
is its radius; and Prt is its rotation period. If the average radius of the orbit is a and 
the angular velocity of the body’s motion in orbit is ωor, then its orbital angular 
momentum is 

MP = m⋅ωor⋅a2 = 2π⋅m⋅a2/P,                                         (22) 
where P is the orbital period of the body. Then the ratio of the spin to the orbital 
angular momentum is written as 

tr
Ptr P

P

a

R
MS

2

4.0/ 






= .                                     (23) 

Table 4 presents these ratios for the planets (from Me to Pl) and the Moon 
(Mo). The Moon’s orbital angular momentum was calculated for its orbit around 
the Earth, and the planets’ momenta, for their orbits around the Sun. It is evident 
that the orbital angular momentum is many orders of magnitude greater than the 
spin. Nevertheless, the accuracy of Galactica appears to be able to take the latter 
into account. Thus, in the future researchers will be able to pose problems and 
attempt to solve them using the Galactica system. 
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Table 4. Parameters of the planets from Mercury to Pluto (Me to Pl) and the 
Moon (Mo) and their average orbital momenta (MP) and spins (Srt). The “-” sign 
before the numbers indicates that the planet rotates clockwise. 

 
 

EVOLUTION OF ANGULAR MOMENTUM OF ROTATIONAL 

MOTION OF EARTH OVER MILLIONS OF YEARS 
 
As already noted, the orbital motion of Solar-system bodies proceeds in 

accordance with the law of conservation of angular momentum (10). The 
rotational motion behaves differently. For instance, due to the rotation around its 
axis, Earth is stretched in the equatorial region. Therefore, the Moon, the Sun and 
the planets produce the moments of forces that act on Earth; as a result, the 
angular momentum of Earth rotation undergoes changes in accordance with 
Theorem (9). From this theorem, the differential equations of rotational motion 
for Earth are derived [19]. 

The orbital and rotational motions of the Earth are schematically shown in 
Figure 12 [20]. Earth moves in an elliptical orbit around the Sun, which is in the 
focus of the ellipse. The smallest distance between the Earth and the Sun in 
perihelion is designated as Rp, and the greatest distance in aphelion, as Ra. The 
orbital motion of Earth proceeds counter-clockwise if you look at the orbit from 

the North Pole, N. The perpendicular to the plane of the orbit is designated as S
r

, 

and, as already mentioned, it is called the orbital axis. The axis S
r

 precesses 

around the vector of the angular momentum CM
r

 of the entire Solar system in 

clockwise direction with a period of 68.7 thousand years. 

Body 
m⋅10-22, 

kg 
R, thou- 
sand km 

Prt, 
days 

a, mil- 
lion km 

P, 
years 

Srt, 
kg⋅m2/s 

MP, 
kg⋅m2/s 

Srt/ MP 

Me 33.019 2.4397 58.6462 57.909 0.2408 9.748⋅1029 9.154⋅1038 1.06⋅10-9 
Ve 486.86 6.0519 -243.01 108.21 0.6152 -2.134⋅1031 1.845⋅1040 -1.16⋅10-9 
Ea 597.37 6.3781 0.9973 149.60 1 7.088⋅1033 2.662⋅1040 2.66⋅10-7 
Ma 64.185 3.397 1.026 227.94 1.8807 2.1⋅1032 3.530⋅1039 5.95⋅10-8 
Jp 189900 71.492 0.4135 778.30 11.8565 6.827⋅1038 1.932⋅1043 3.53⋅10-5 
Sa 56860 60.268 0.4375 1429.4 29.4235 1.373⋅1038 7.861⋅1042 1.747⋅10-5 
Ur 8684.1 25.559 -0.65 2875.0 83.7474 -2.539⋅1036 1.707⋅1042 -1.49⋅10-6 
Ne 10246 24.764 0.768 4504.4 163.7230 2.38⋅1036 2.528⋅1042 9.41⋅10-7 
Pl 1.6509 1.151 -6.3867 5915.8 248.0208 -9.961⋅1028 4.638⋅1038 -2.15⋅10-10 
Mo 7.3477 1.738 27.3217 0.38440 0.0748 2.363⋅1029 2.89⋅1034 8.18⋅10-6 
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Figure 12. The Earth's positions in its orbit in 2025 at the days of the spring 
equinox (March 20), of the summer solstice (June 21), of the autumn equinox 
(September 22) and of the winter solstice (December 21), and the time of its 
movement in days in spring (92.7 d), in summer (93.7 d ), in autumn (89.9 d) and 

in winter (89.0 d): N
r

 is the axis of the Earth’s rotation, and 2M
r

 is the vector, 

relative to which the axis N
r

 precesses with a period of 25.74 thousand years; S
r

 

is the axis of the Earth's orbit, and CM
r

 is the vector relative to which the axis S
r

 

precesses with a period of 68.7 thousand years [20]. 
 

The Earth rotates on its axis N
r

 in the same direction in which the Earth 

moves in its orbit, i.e., counter-clockwise. In the contemporary epoch, the axis N
r

 

is inclined to the orbital axis S
r

 at the angle ε = 23.443°. As a result of solving the 
differential equations of Earth’s rotational motion, it was found that the axis of 

Earth’s rotation N
r

 precesses around a second direction in space, shown in Figure 

12 with a vector 2M
r

 [20]. The precession period of the axis N
r

 is 25.74 thousand 

years. The vector 2M
r

 is inclined to the vector CM
r

, around which the orbits of the 

planets precess, at an angle of 3.201402°. In term of direction, the angular 

momentum of the rotational motion of Earth almost coincides with the axis N
r

 of 

its rotation. Therefore, the motion of the vector N
r

 reflects the precession of the 
angular momentum due to Earth rotation. 

The graph in Figure 13a shows, in the form of the dependence SyM on SxM, the 

precession of the orbital axis S
r

 around the vector of the angular momentum of 
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the Solar system CM
r

 over a period of 5 million years. From starting point 1S, the 

axis S
r

 moves into the past counter-clockwise, and to the future, its precession 
proceeds in a clockwise direction. Points 2S and 3S show the position of the axis 

S
r

 at other times. Over 5 million years, the precession mainly proceeds in such a 

way that the angle between the vectors S
r

 and CM
r

 never exceeds 2.578°. Only in 

one precession cycle at point 2S in epoch T = -2.326 kyr the angle between the 

vectors S
r

 and CM
r

 reaches a value of 2.926°. 

 
Figure 13. Projections of the precession trajectories of the Earth's orbital axis S

r
 

(a) and its axis of rotation N
r

 (b) for 5 Myr on a plane perpendicular to the 

vectors CM
r

 and 2M
r

, respectively. The positions of the axes at time points and 

angles between them: 1S and 1N for T = 0 kyr, ε = 23.443°; 2S and 2N for T = -
0.2326 Myr, ε = 30.778°; 3S and 3N for T = -2.6582 Myr, ε = 32.680°. 

 
The graph in Figure 13b illustrates, in the form of the dependence of NyM2 on 

NxM2, the precession of the axis of Earth rotation N
r

 around the vector 2M
r

 over a 

period of 5 million years. Precession occurs within a ring with an average angle 

between the vectors N
r

 and 2M
r

 equal to θM2 = 23.614°, the maximum angle 

being θM2max = 27.756°. 

To compare the precessions of the axes of the Earth N
r

 and its orbit S
r

, 

projections SyM2 и SxM2 of the vector S
r

 in the xM2yM2zM2 frame were determined. 

Figure 13b shows the motion of the axis of the Earth’s orbit S
r

 with respect to the 

vector 2M
r

. The points 1S, 2S and 3S show the position of the axis S
r

 in the 
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corresponding epochs. At the points 2N and 2S, the axes N
r

 and S
r

 are in one and 

the same epoch T = -0.2326 Myr. The large deviation of the orbital axis S
r

 has led 

to a large deviation in the Earth axis N
r

. However, the center of precession of the 

S
r

 axis  is shifted in the perpendicular direction on line 2N2S of deviation of the 

axes N
r

 and S
r

 and, therefore, the angle between these axes in this epoch, ε = 
30.778°, is not maximal. Over a period of 5 million years, the maximum angle ε = 
32.68° occurs in the epoch T = -2.6582 Myr, when the line 3N3S coincides with the 

direction of deviation of the precession center of the S
r

 axis. 
 So, the angular momentum of the Earth's rotation and the angular 

momentum of its orbital motion both precess in a clockwise direction yet with 
different periods, 25.74 and 68.7 thousand years, respectively. Here, the axes of 
the precessions are different, and the angle between them is 3.201402°. 

 
 

CONCLUSIONS 
 
The translational motion of the material points of an isolated system, 

including the orbital motion of Solar-system bodies, proceeds in the analyzed 
statements without a change in the angular momentum of the entire system. 
Therefore, a change of this quantity in the calculation of motions indicates the 
error of the calculation method used. Here, the angular momenta of individual 
bodies undergo variation and the patterns of the variation for each body being 
individual. However, all the momenta precess around the angular momentum of 
the Solar system. The angular momenta due to the rotational motion of individual 
bodies also undergo variation. They also precess. However, the precession occurs 
relative to another direction in space. 

The accuracy of the existing methods for calculating the motion of space 
objects is inadequate for today’s problems of space and celestial mechanics. For 
example, in order to improve the reliability of the calculated motion of Apophis 
after its encounter with the Earth in 2029, the accuracy of these methods should 
be increased by an order of magnitude [6], [7]. Researchers need more accurate 
methods, not only to calculate the motion of asteroids and spacecraft and to study 
the evolution of the Solar System over geological time intervals, but also for 
many other problems of celestial mechanics, e.g., to refine the masses of the 
planets. Our studies on the change of angular momentum make it possible to 
assess the accuracy of the methods used for calculating motions, find the causes of 
their errors and the ways to improve these methods. 
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