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Chapter 1

ANGULAR MOMENTUM DUE TO SOLAR
SYSTEM INTERACTIONS.

Joseph J. Smulsky’
Institute of Earth's Cryosphere, Tyum SC of SB RAS,
Federal Research Center, Tyumen, Russia

ABSTRACT

Substantiations of the theorem of angular momertbange and the law of
conservation of angular momentum are considered. cftange of angular
momentum indicates an error in the method of catouy the dynamics of
the Solar system. In the Galactica program, theng@han dimensionless
angular momentum over 160 years is 2?1 0vhereas in programs using
SDM, this change is within 8 ¥8 The changes in angular momentum of
individual bodies are analyzed, including the ptanthe Sun and the Moon,
as well as their influence on the changes in amgatamentum of the Solar
system. The variations in angular momentum duéeamtbital motion of the
planets relative to the Sun over various time wrdky are considered. The
evolution of angular momenta of the planets ovdlions of years proceeds
through their clockwise procession around the tatajular momentum of
the Solar system. The angular momenta due to ookdtimotion of the
planets and the Moon are analyzed.

* Corresponding Author address
Email: JSmulsky@mail.ru
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Those momenta are five orders of magnitude smalbenpared with the
angular momenta due to the orbital motion. In thea@tica program, the
angular momenta due to the rotational motion akertainto account at
considering the processes of collision of bodied #reir fusion into one
body. The evolution of angular momentum due to ristational motion of
Earth over millions of years is analyzed. That dagunomentum also
precesses clockwise, as well as the angular momedtie to orbital motion,
yet relative to another direction. The angle betwtee latter direction and
the direction of total angular momentum of the Bdgstem is 3.2°. The
reported results illustrate the specific featumeghie evolution of the Solar
system. They can prove useful in controlling angrowing the methods of
calculation.

Keywords. differential equations, motions, angular momentambits, rotation,
axes, solution accuracy

INTRODUCTION

In mechanics, the interactions and motions of lwdi® analyzed using two
characteristics of their interaction: force and thement of force. The
translational movement of bodies is expressed amentum, and the rotational
motion, as angular momentum. The differential eiguatfor translational motion
stem from the fact that the presence of a forcdslda a change in momentum.
Similarly, the differential equations for rotatidmaotion result from the fact that
the presence of a moment of force leads to a chahgagular momentum. In
addition to the direct influence on rotational noeati angular momentum can also
be used to control the translational motion and ttes calculation methods for
this motion.

The results of the space studies of recent degadesde evidence that the
calculated orbits of celestial bodies and trajeetoof spacecraft may often be
inconsistent with their observed motions. Simileidence is provided by studies
of the Solar System’s evolution over geologicaldiperiods. This evidence has
led some researchers to conclude that the motibobjects in the Solar System
are generally chaotic, suggesting a likelihood dutare collapse of the Solar
System [1], chaotic motions of asteroids after glary encounters [2], etc. Other
researchers address these inconsistencies by uoingg in addition to the
Newtonian force of gravity, other, weaker influessgeich as the Yarkovsky effect
[3], dark matter [4], radiation pressure, etc.

However, the indeterminacy of motion and the unclesture of the forces
contradict the spirit of mechanics. Apparently, dvef accepting the above



Angular Momentum due to Solar System Interactions 3

changes, researchers need to check, within theefwank of mechanics, the

reliability of the existing methods for calculatimgotions. One measure as to
whether the solution of a mechanics problem is @&teus the observance of the
laws of conservation. In this paper, we investighie conservation of angular
momentum for the entire system of interacting bedig different methods in

calculating the dynamics of the Solar System.

THEOREM ON THE CHANGE OF ANGULAR MOMENTUM FOR A
SYSTEM OF MATERIAL POINTS

Consider a mechanical syste® involving N material points (Figure 1),
where the numbers of the points arek = 1, 2, ..N. Each of thek points acts on
point i with a forceF;", wherek # i. The superscriptiti” denotes the force of
interaction of the material points included in thgstemS,. Those forces are
internal, and they are characterized by the fact thatahees of mutual action are
equal in magnitude and opposite in direction:

Fi||<n = _Fklin : ) (1

Expression (1) is known as the third law of mecbsni

interaction by external force;* with bodiesm that are not included in the
system ofS,

In addition, outside syste® there are) material pointsj(= 1, 2, ..J) (Figure
1), each acting on points of systemS with an external forc&;”, where the
subscript €x" (externa) denotes the action produced by material pointside:
systenS,.

The second law of mechanics,
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defines the acceleratio% of a point body with mass acted upon by other

bodies with a resultant forc€& . Equation (2) is the differential equation of
motion for a body with mass. By summing the actions due to all material points
(Figure 1) on the material point with masg in accordance with law (2) we

obtain the differential equation of motion of thaterial point:
J

dv, - = in = ex
m=—t=>F +> F" ®)

dt ki j=1
where the first term in the right-hand side of doume (3) is the action of all
internal forces on material point, whereas the second term is the similar action
of all external forces.

We sum equations (3) over allmaterial points of systei®:

N dv N J
zm—'=zzFuex- (4)
i=1 dt i=1 j=1

In summing equations (3), by virtue of the third/laf mechanics (1) the sum
of all internal forces is zero. That is why allémal forces;" are absent from
equation (4).

In mechanics, the moment of forée and the moment of momentumv
relative to some centef are considered as a product toby force F or by
momentunmyv. Here,h is the distance from cent€rto forceF or to momentum
mv. In vectorial form, the moment of momentum fof is defined ast xmv,
where the radius-vectar directed from the centdT to the point with masm.
The angular momentunt xmv is also a vector. We denote this vector as
M. (mv) ; then, the angular momentum of the material paintn Figure 1 is

ﬁlc(mvi):ﬁxmvi- )

Point “C” in Figure 1 is chosen coincidental with the cemtemass of system
S

According to formula (5), the angular momentuﬁnb(m\?i) is a vector
perpendicular both to the velocity and to the radius-vectdj of the bodym .

Let us find now the relation between the angulanmmetum of a moving material
point and the moment of forces acting on this bddy this end, we vectorially
multiply the left and right sides of the differaatequation of its motion (3) by the

radius-vectort; of the pointm :
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Then, in accord with designation (5), we obtaindbpendence of the angular
momentum of the poinim on the moment of forces acting upon this poirthi;
form:

mc(mV) ch(F.L”) +ch(F.f*) (6)
k#i j=1
We sum equatlon (6) over &llmaterial points of systeﬁg'
ch(mv) Zch(F.L"HZch(F“ ©)
i i=1 k#i i=1 j=1

The left-hand side of equality (7) is the derivative of tb&al angular

momentum of syster§ relative to the centet

i =Y (). ®

The first term in the right-hand side of equation 73iéfined by the internal
forcesF;". It can be shown that this term is zero, like in exgices(4) on the

summation of forces in (3) over all points . Hence, with allowance for formula
(8) the equation (7) can be written as
lel N (e
<= ZZ (F™). ©)
i=1 j=1
Equation (9) presents the theorem about the chaintie angular momentum

for a system of interacting bodies.
Providing that systers; is acted upon by no external bodies, or the action

to such bodies is neglected, thatl-:|§X =0, then the right-hand side of equation

(9) vanishes, and the angular momentum of sy&eammains unchanged, so that
we have
M. =const (10)

Equation (10) is the law of conservation of theildagmomentum.

In analyzing the dynamics and evolution of the Eeilstem, only the actions
due to Solar-system bodies are to be taken intoumtc That is why the obtained
solutions of the problems must comply with the lafwconservation of angular
momentum (10).
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CHANGE OF ANGULAR MOMENTUM IN THE GALACTICA
SYSTEM

Studying the motion of Apophis for different initi@wonditions and by
different methods, we found [5] — [8] that the urtaimty of the asteroid’s motion
after approaching the Earth can be reduced by asorg methodological
accuracy. Thus, we investigated the change of angnbmentum of the Solar
System in numerical calculations of its motion twp tmethods. The first method
is traditional. It is based on the standard dynammodel (SDM) and is
implemented in programs for calculating the DE eseephemeris, in particular
the DE406 [9], and in the Horizons system [10]. Teéecond method is
implemented in the Galactica system [11] - [13]isltbased on the Newtonian
interaction of point masses, and differential emuet of motion are integrated
using a new high-precision method. Information to@ problems solved using the
Galactica system can be obtained from:
http://www.ikz.ru/~smulski/Papers/Galctl1R.pdhe Galactica system, with the
functionalities necessary to solve problems, is elfre available at
http://www.ikz.ru/~smulski/GalactcW/ Its description is provided in the
following files: GalDiscrp.pdf (Russian) and GalbigE.pdf (English). The text
of the program in Fortran was published in [13].

One important indicator for measuring the reliapilof a solution of a
differential motion equation is the dimensionlebamge of the system’s angular
momentum. In accordance with (10), in the absefiaxternal influences on the
system of interacting material points, the anguteamentum of its motion in
projection on the axis z, remains unchanged:

N
Mc, = > m(v, X -V, ¥,)= const, (11)
i=1

wherem, X, Vi u Vi, W, are the mass, coordinates, and velocities of-thebody
andN is the number of bodies in the system.

Therefore, the dimensionless change of the momentum

0Mc; = (Mcz - Mcz0/Mczo (12)
whereMc,qis the angular momentum at a certain point in timest be zero; i.e.,
oMc, = 0. If it is not zero, we have evidence of eriiorthe numerical integration
of the problem.

The measure of the accuracy éfic, in the integration of equations in
Galactica and the relationship 6Mc, with the errors in the coordinates and
velocities are detailed in [14], [15]. While solgidifferential equations, Galactica
calculates various reliability criteria for the cpuated results, including the
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dimensionless change of the momentuilc, Repeated studies for the Solar
System have found that the projections of angulamentum onto the axesand

y behave similarly to the projection &flc,. Since this projection is close in value
to a change in the modulus of the momentéibhg, below we considefMc..

The angular momentum was calculated in GalacticaHe planets, Moon,
Sun, and Apophis in barycentric equatorial coordiador the epoch 2000.0 [6] -
[8]. The calculations were made with a stepddf= 10° year and an extended
length of numbers (34 decimal places). The pattérohange obMc, over 160
years is shown in Figure 2a. It is evident thas trdlue changes linearly with time
at an average rate dfMc/dT = 1.510% cyr’, where 1 cyr = 100 yrs. As already
mentioned above, these results were obtained usinmpers of extended length.
When integrating the equation of motion using Gatacsystem with the double
length of numbers (17 decimal places) over thisetimterval, the error of
momentumsMc, varies in the rangéMc, = 10" i.e., does not increase linearly
with the increase in time needed to solve the pmblThe algorithm of the
Galactica system allows for error stabilizationn@cessary) also in the case of the
extended number length.

5MC:
Lo-10™
50107

a

0
S0107
10107
400"
200"
0
20107
0
-4.0-10°
-8.0-10°
-0.6 -04 -0.2 0 0.2 04 06 T,cyr 1.0
Figure 2. Dimensionless change of angular momerdfithe Solar Systema)
differential equations of motion of the Sun, plandfloon, and Aphophis were
integrated by Galactica; motion of the planets,,34oon, and the three asteroids
(Ceres, Pallas, and Vesta) were calculated usb)gDE406, and ) Horizons.
The values ofMc, were calculated from (12) &tco as of November 30, 2008.

is time in Julian centuries of 36525 days in a wentfrom the epoch of
November 30, 2008.
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CHANGE OF ANGULAR MOMENTUM IN THE SDM SYSTEM

We studied the change of angular momentum usin@ E¥06 ephemeris and
the Horizons system for the planets, the Sun, tberiiand three asteroids Ceres,
Pallas, and Vesta relative to the center of masseoSolar System. We calculated
the projections of the angular momentifg,, Mcy andMc, onto the axes of the
barycentric equatorial frame and angular momentumdutus Mc. All the
calculations were performed for several time poifiise body masses for the
DE406 ephemeris (the same as in the DE405 ephémeeig taken from their
description.

The Horizons system also assigns a mass to eagh Botte these masses
differ from those used in the DE406 ephemeris, Vge aalculated the angular
momenta with the masses from the DE406 ephemerisedter, Horizons has
Pluto’s coordinates until January 29, 2051. Themfave calculated the angular
momenta without Pluto. However, it turned out ttieg pattern of change of the
angular momenta in the two latter cases is vijudde same as in the first case.
Thus, in our further work we used the angular mamevith the masses from the
DE405 ephemeris.

Table 1 presents momenhéc, calculated using the DE406 ephemeris and
Horizons for a period of 160 years. For the DE4pBemneris, the values of the
momentum are unchanged to the 10th significant;digthe Horizons system, to
their 4th significant digit. The pattern of charfge the projections of momentum
Mcx andMc, and total momenturivic is similar to the change in ttzeprojection
of momentunMc,, therefore, in what follows, we consider, likeGalactica, only
the projection of the momentum onto thaxis.

Table 1. Angular momentuiMc, of the motion of the planets, the Sun, the Moon,
and three asteroids, which was calculated usingDiEé06 ephemeris and the
Horizons system for different dates and numbergduban days (JD) with the
masses from DE405

Mc,[10"* kgm?/s
DE40¢ Horizons
Dec. 30, 194 | 2433280. | 2.8841037074339" | 2.8840875938471.
June 28, 19¢ | 2440400. | 2.8841037085619: | 2.8841489715319.
Nov. 30, 200 | 2454800. | 2.8841037078369: | 2.8841315067001.
Nov. 30, 203 | 2462835. | 2.8841037083630! | 2.8839645695980!

Date JD
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Nov. 30, 205 | 2470140.: | 2.8841037095219( | 2.8842027316056:
Nov. 30, 207 | 2477445.. | 2.884103707331( | 2.88392374854811
Nov. 30, 209 | 2488037.: | 2.8841037091254" | 2.8841446946073!

Figure 2 compares the changes in dimensionlesdangomenta calculated
using Galactica, DE406, and Horizons. The changesomenta are given with
respect to momentum as of November 30, 2008. Tise fibint corresponds to
December 30, 1949. As already noted, in Galactiesahgular momentum grows
linearly with time, and its change over 160 yeaasuMc, = 2.410%% In the
DE406 ephemeris,dMc, changes nonmonotonically, and the range of the
variations is 80" which is 11 orders of magnitude greater thanntioenentum
in Galactica.

The angular momentum in Horizons also changes nmotoaically, and the
variations indM¢, can be as large ad19°. Hence it follows that, first, the
changes in angular momentum in the DE406 epheraedsn Horizons are many
orders of magnitude greater than those in Galac8Beaond, the changes in the
angular momentum in Horizons are five orders of mitage greater than those in
the DE406 ephemeris.

It should be noted that originally the studies lase the DE406 ephemeris
and the Horizons system were conducted for theeptarMoon, and Sun, i.e.,
without the three asteroids. The change in momentia, for the DE406
ephemeris was greater by a factor of 2.5. Thetesullable 1 and Figure 2 show
a smaller change @M, because the DE406 based calculations took intoumtc
the three asteroids. Since the contribution of akteroids to the change of the
momentumdMc; is roughly 1.20°, it was expected that consideration of the
asteroids would not affect the change of momentuiddrizons. This conclusion
was confirmed by the calculations: consideratiothefasteroids did not affect the
error in angular momentum obtained using the Hoiszeystem.

DYNAMICSOF ANGULAR MOMENTA OF SEPARATESBODIES

To understand the reasons for the change of angudanentum, we studied
these changes using the DE406 ephemeris for indiVidodies: the planets, Sun,
and Moon. We considered the dimensionless changepa®d with the
momentum as of November 30, 2008. We studied eallttiree projections of the
momentum: Mc,, Mcy and Mc, Since their behavior is identical, we
considered, like in the above, only the projectioto the z axis. The chang¥lc,
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for these bodies over 160 years is shown in Fi@undth a solid line. It is clear
that the angular momenta of the bodies, like tradsie Solar System in Figure
2b, show oscillatory changes. The least dimensssntdanges are observed for
Pluto, Neptune, Saturn, and Jupiter. The Sun’s nmtume shows the greatest
change, and among the planets the greatest clivigés observed for Mercury.

It should be kept in mind that, unlike in the twadly problem, the interaction
of more than two bodies results in a change ofathgular momentum of each
body. There is an ongoing exchange of momenta legtwibe bodies. For
example, it follows from the plots in Figure 3 thihé values oM, for Jupiter
(Jp) and the Sun (Su) change asynchronously, whielridence of an exchange
of angular momenta between these bodies. Thuspritidem is not that these
momenta change, but how correctly the results efritegration reflect the actual
changes in the bodies' angular momenta. A slighbrigistency between the
calculated and actual values may lead, due to slu@mation, to a visible change
of the angular momentum for the Solar System akaey

8107

50107
25107
Jagiiy

8107 -
0

4 . /
40 -0.4 -0.2 0 0.2 04 0.6 T, cyrl0

-0.5-107

-1.0-10"
0.6 04 -0.2 0 02 04 0.6 T,cyr L0

Figure 3. Dimensionless change of angular momenttaSblar System bodies

from Mercury Me) to the Moon o) and Sun $4y. The value ofdMc, was

calculated from (2) aMc,o as of November 30, 2008 using the DE406

ephemeris and using Galactica.
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The contribution of angular momenta of individuadies to that of the Solar
System depends on their absolute values. Table@ssthe momentilco; of the
bodies, the rang&ldMc,; of their dimensionless changes, and the rangdef t
absolute change8Mc; ;. These values were found from the formula:

AMczi = Mczmaxi— Mcezming WMz = Mcoj (Aducz,i (13)
wherei is the number of the body arc maxiand Mczmini are the maximum
and minimum value odMc_;in the plots in Figure 3.

It is evident that the largest absolute ramthc,; of the variations in the
angular momentum is observed for the Sun and Jupite, as we see from Table
2, their AMc; are similar. As noted above, their momenta changantiphase.
Therefore, the errors in the determination of thairgular momenta may
contribute substantially tdMc,; of the Solar System as a whole.

Table 2. Ranges of change of the angular momenturthé planets, Moon, and
Sun relative to Solar System center of mass usiBgdb for a period of 160 years
from December 30, 1949. The dimensionless changa® wetermined with

respect to November 30, 2008. The projections eflibdies’ angular momenta
Mczo,and their changedMc,;are given in k@h/s

Bodies’ 1 2 3 4 5 6
No.
body Me Ve Ea Ma Jp Sa
A, 0.0318 0.0132 0.00626 0.008 0.00172  0.000975
M 7.795378332 1.6744633| 2.4522183| 3.1839633| 1.7690015| 7.2208333
czi 1o® 1% 0% 1o* mo® 0%
2.4789303 | 2.2076076| 1.5344546| 2.56960663| 3.0355753| 7.0420275
Me, 6™’ 10*® mo*® o™’ mo* 10*
Bodies’ 7 8 9 10 11
No.
body Ur Ne PI Mo Su
A, 0.00231 0.000375 0.0000322 0.071 2.075%
M 1551594 | 2.3175955| 3.6622486| 2.9202579 | 1.5101363
czi 1o* 1o* 1o® mo® mo®
3.5870122 | 8.6886268| 1.1792440| 2.0741525 | 3.1328189
M 1o o’ mo* ol o

The same studies of angular momenta were condurtied) the Galactica
system. The dimensionless changes in momeéhtg, for the same bodies are
shown in Figure 3 by a dashed line. Here the calimrs were conducted with a
smaller time interval, i.e., every five years. ptanets with a large orbital period,
beginning with Jupiter, the angular momentum isxgeechange periodically. For
the terrestrial planets, the variation perioddc, are less than the five year



12 Joseph J. Smulsky

interval between the points in the plots. Therefome cannot see the variations
of these periods.

When comparing the dimensionless momeditk, in the plots in Figure 3,
which were calculated using the DE406 ephemerisGaidctica, it is evident that
their dimensionless variation ranges are the sdmesome cases, when the
momenta are calculated for one and the same tirimg, ibe values ofMc; are
also the same. For example, Bt= 0.4 the dimensionless changes in the
momentum have approximately the same values fdiotlmving bodies: Me, Ve,
Ea, Jp, Sa, Ur, Ne, PI, and Su. It is only for tvaalies Mars (Ma) and the Moon
(Mo) that they are visibly different. As is evidendbm Figure 2b, this difference
for the DE406 ephemeris a = 0.4 may lead to the largest error in angular
momentum for the whole Solar SystetMc, = 610,

A good consistency in the changes of the momadwig for the two programs
over the entire range is observed for Uranus (Neptune (Ne), and the Sun (Su).
At the same time, the momen&d, are observed to differ at around certain
points in time:T = -0.6 and -0.4 for Mercury, = -0.6 and 0.9 for Venu3,= 0.9
for Saturn, andl = 0.2 and 0.6 for the Earth and Mars. These diffees in the
angular momenta for individual bodies may lead he previously observed
variations in the angular momentum for the wholéa6&ystem in the DE406
ephemeris. Thus, the comparisons of angular momfamtandividual bodies
(Figure 3) by different methods can serve as lamksnén searching for the
reasons for errors in the less accurate programtle DE406 ephemeris.

DIFFERENCESIN THE POSITIONS OF BODIES

The calculated changes in angular momentum maycatglierrors in the
coordinates and velocities of bodies. We now trggtmate them. Let all bodies
have the same dimensionless deviatidnfor all coordinates and velocity
components; then we can write the coordinate ahatig of thei-th body, i.e.,
for the projection onto theaxis, at any point in time:

X =%i (L+9); Vui=Vui(1+9), (14)
wherex; andv,; are the calculated values argdandvy; the true values of the
coordinate and velocity of theth body at this time point. If we substitute,
according to (14), the coordinates and velocitige iequation (11) for angular
momentum and then into (12), we obtain

Mc,=20 15§
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It should be noted that in this case the calculatibthe dimensionless change
in momentumdMc; is based oMcy in (12), which is calculated from the true
values ofx; andv, etc.

Thus, given that the dimensionless deviation ofcthardinates and velocities
is the same, it is half of the deviation of the neotumo= 0.5 Mc,.

To analyze the structure of the deviations, weistlithe differences between
the DE406 ephemeris and the DE405, DE403, and DERd@meris and the
Horizons system for two dates: December 30, 194 wie Julian day JD =
2433280.5 and December 30, 1999 with JD = 245154%& determined the
deviations of coordinatedx, 4y, and4z and the velocitieglvy;, 4w and4v,; the
deviations of the moduli of distance®; and velocitiesdv;; and the angular
displacementdg, in the planexy and the dimensionless change in the distances
between the positions of the body.

Table 3. Average dimensionless differences of ti@, DE403, and DE200
ephemeris and the Horizons system from the DE466rapris.

Epoch Dec. 30, 19¢ | EpochNov. 30, 199

d’m A¢m d’m A¢m

DE40% | 1.010™ | 6.820™ | 1.010™ | 8.210%
DE40: | 2.1107 | 7.610° | 3.0107 | 1.2107
DE20C | 8.6107 | 3.310" | 3.210° | 1.610'
Horizons | 1.910" | 1.520" | 1.110" | 5.210°

Source

Table 3 gives two parameters of these studies, twkiere obtained by
averaging over all bodiesr,, is the average dimensionless deviation of the
distance between the bodies in different calculafioograms andgy, is the
average moduli of the difference of the angulatagises between the bodies in
the heliocentric equatorial frame. As is evidenhirTable 3, these values are well
correlated between each other, witii,, being approximately half as large as.

A comparison of two different epochs 1949 and 1886ws that the pattern of
deviations is almost unchanged.

It is seen from Table 3 that the lower the numideroephemeris, the worse
is its accuracy. The data of Table 3 also confinat the accuracy of the Horizons
system is worse than that of DE406 or DE405 ephismistoreover, it follows
from the analysis of the differences in distandeand velocitiegv that although
their values vary in a broad range for differendiles, their dimensionless values
a and ov vary within narrower limits. The average value tbie limits is
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accurately reflected by the valués, u andA4¢,. Therefore, the use of the same
value for the deviation . of the bodies’ coordisatand velocities when deriving
its dependence on the deviatidvc, of the angular momentum is justified.

When studying the changes in angular momentum b&@ryears, we found
that the range of its variations 4&8Mc, = 810 for the ephemeris anddMc, =
8110 for Horizons. Therefore, the dimensionless erafrshe coordinates and
velocities calculated using these systems shouleixpected to be of the order of
410" and 4.510°, respectively. This accuracy estimate was obtaifioecthe
“true” parameters of the motion of the bodies, whgive a constant angular
momentumdMc,. Naturally, this estimate differs from the dewais &, in Table
3, which were obtained by comparing different vamsi of the ephemeris.

VARIATION OF ANGULAR MOMENTUM IN RECENT UPDATES
OF DE EPHEMERIDES

The results shown in Figure I2 and c were obtained in 2011. After the
publication of our paper [16], the accuracy of thirizons system was
substantially improved and made comparable with dfidhe DE406 Ephemeris.
The DE Ephemerides are being permanently improvet get updated almost
every year. For example, the DE405 Ephemeris waased in 1998, and DE422,
in 2009. That is why we have performed a studyhaf variation of angular
momentum in the DE422 Ephemeris. In Figure 4, tlaeiation of angular
momentum according to the DE406 Ephemeris (clives compared with the
results of DE422 (curva).

The graphs in Figure 4 show the variation of thejgmtions of angular
momentum,Mcy, Mc,, and Mc, and also that of total angular momentum,
Mg, for the same Solar-system bodies as those showigure 2. That is why
for the projectiondMc, of the DE406 Ephemeris (curi¢ the graphs in Figures 2
and 4 are the same. Evidently, the magnitude ofowllations of projection
Mg, are the same as that for projectidic, The amplitude of the oscillations of
projection Mc¢y is several times greater than that fdvic, Yet, since the
projection of angular momenturilc, is much smaller thaMc, the intense
oscillationsMc, do not affect the oscillationdVic of total angular momentum.
That is why oscillationsgM¢, are almost perfectly coincident with oscillations
Mc. This result confirms the fact that the choicejoéntity dMc, as an indicator
of the accuracy of calculation programs for motioas made quite adequately.
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When comparing the deviation of angular momentunthef later DE422
Ephemeris (curve®) with DE406, we see that in some cases, the den@mif
Mgy, Mc; andMc are smaller in comparison with those in DE406. ey, in
general, over the entire interval of 160 yearsifagnitude of the deviation has
even increased. This indicates that the DE Ephel®eetave reached their utmost
accuracy, and no future improvements will alloweduction of errors at least by
an order of magnitude.

610"
06 04 02 0 0.2 0.4 0.6 Teyr 1.0

Figure 4. Dimensionless change of angular momentiinthe Solar System:
planets, Sun, Moon, and the three asteroids (CBedlss, and Vesta)l.— DE406;
2 — DE422.

That is why we suggest that motions in the Solatesy should be calculated
using the Galactica program. The algorithm of ghisgram has a considerable
potential for improving the accuracy of calculatidfote that the actual error in
calculating the position of bodies (or the diffezerof calculated position from
actual position) is defined both by the startingadand by initial conditions.
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Those data and conditions include the masses aédogl their coordinatesy,

and velocitiesv,, at the initial timet,. Subsequently, these values can be refined

using the Galactica system throughout the entisenlational base. Since there is
no limit for such a refinement, there exists a gpoaspect for the long-term use
and further development for the Galactica system.

VARIATION OF ANGULAR MOMENTUM OF PLANETS
RELATIVE TO THE SUN

Above, we analyzed the variation of the angular motum relative to the
center of mass of the Solar system. When analyttiagnotion of planets, their
orbits are considered not relative to the centenass, but relative to the Sun. In
the problem of two bodies, the Sun and a planet,atihgular momentum of the
planet relative to the Sun experiences no chariggsThe latter is also evidenced
by the second Kepler law: the radius-vector of plenet describes equal areas
over equal periods. In theoretical mechanics,Ithisis extended to all cases with
a central force, i.e. the force that passes throhgltenter of action.

The second Kepler law was established by Keplesed@n an analysis of the
astronomical observations made by Tycho Brahe. Thiw reflects an
approximate motion of the planets. It can be apprated with an ellipse, a flat
and closed line. As a result of the joint actioe doi the Sun and other planets, the
orbit of each planet presents an open spatial cufverefore, the angular
momentum of a planet relative to the Sun undergagations.

We used Galactica to study with more detail, thenge of angular
momentum for the planets relative to the Sun. Thgukr momentum in
projection on the axisis defined by equation

M, = m(VgXs - VsiYsi)s
where xg;, Ysi 1 Vsx, Vsyi are the coordinates, and velocities of thté planet
relative to the Sun. The periodicity in the chaofeoordinates and velocities is
due to periodicity in the movement of the plan8isce the perio of revolution
of the planets changes a thousand fold from Mertoiri?luto, the studies were
conducted at time intervals divisible by the perRdFigure 5 shows its change
AM, during one revolution of the planet. As is evidéim the plots, the value
AM, for all planets in this interval undergoes ostillg changes with periods less
that P (planet’s revolution). For the Earth (Ea), there about 12 variations of
AM,, which are due to the lunar influence. The leastation rangedd\l, = 310°
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over the interval of one revolution is observedNtercury, and the largest (if we
ignore the Earth), for JupiteddVl, = 2110*. Due to lunar influence, the value
AM, = 10° for the Earth is greater than for Jupiter.

M e - | Se ffﬂtlfos
1-10°° *
0.002
0 0.001
1107 0
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5107 -0.001
0 0.003
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J 0.001
1107 3
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4 Ea
-4:10 . 0.001
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- MJV\’\-'\,‘/\//\ v
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Figure 5. Dimensionless change of projection ofudslgmomentum relative to
the Sun for planets ranging from Mercury to Pluteeroone orbital revolution.
The values oM, were calculated &l as of December 30, 1948, = T/P is the
normalized time in orbital period®,, = 0.241, 0.615, 1.000, 1.88, 11.86, 29.42,
83.75, 163.72, and 248.02 are orbital periodsdersial years for planets ranging
from Mercury to Pluto.

From Figure 5, it is evident that more regular keitons M, are exhibited
by Earth and by the planets ranging from SaturRltdo. As already noted, the
regular oscillationsdVl, of the Earth are due to the influence of the Mobie
regular oscillationgM, of the external planets are due to the actiomefinternal
planets, of which Jupiter has the greatest inflaenc
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Figure 6.
Dimensionless change
of average modulus of
angular momentum
relative to the Sun for
planets ranging from
Mercury to Pluto over
300 orbital revolutions.
The value ofdMp was
calculated for average
momentum  modulus
Mpy; as of December
30, 1949.

The range of
change of the angular
momentum relative to
the center of mass,
AMc, (this range is
presented in Table 2)
varies widely as well,
from 4Mc, = 0.0318
for Mercury toMc, =
3.22 10 for Pluto.
However, these values
differ from the
oscillations of angular
momentum relative to
the Sun. For Mercury,
the oscillations relative
to the Sun are 10000
times smaller, and for
Pluto they are 300
times greater. This fact
clearly indicates that
the Sun, in its motion
relative to the center of
mass of the Solar
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System, almost completely entrains Mercury intoritgion. At the same time, the
farthest planet Pluto is least susceptible to the’sSorbital motion, its motion
relative to the center of mass of the Solar sysieing more regular.

It should be noted that the dynamics of angular erom oM, during one
revolution (Figure 5) can be different in a diffieteepoch. Thus, we studied the
changes in angular momentum over large time periéde considered the
average moduli of angular momend#®lp during one revolution. These studies
were carried out for each planet over an intenfaB@ planetary revolutions.
Figure 4 shows the changes in the average angwaremta for the same planets
as in Figure 5. Since the interval between pointthe plots in Figure 6 is one
planetary orbital perio®, the variation periods for angular momentum angakq
to several period®. For example, the least variation periods for #verage
angular momentum in Figure 6 for Mercury and Jupate 4 - 5 of their orbital
periodsP. As is seen from Figure 6, in addition to thesarshariations, there are
also longer ones. And for Mars, Jupiter and Satura can see tendencies that
mark the beginning of variations with a perioderfig or hundreds of thousands of
years. They are due to the long period variatiohthe planetary orbits [13] -
[15].

For distant planets: Uranus, Neptune and Plutop$adlations of the angular
momentumMp (Figure 6) were established with periods of 5.k26 2.603 kyr
and 8.033 kyr, respectively. With these periods, plarameters of the orbits of
these planets also fluctuate. This includes thergdcity, the angle of perihelion
and the orbital period of the planet around the.Suactuations of the orbital
period are fully identical to those of angular maoen. The range of variations
of average angular momenta in Figure 6 does natezkthat of variations during
one revolution, which are shown in Figure 5. Thasom is that the averaging of
variation amplitudes during one revolution reduttesr range.

It should be noted that the high time resolutiardigs on angular momentum
M_ using the Galactica system (Figure 5) show thatctrangedM, for individual
bodies is smooth, i.e., without any jumps or breakserefore, the difference
between dMc, calculated using DE406 (Figure 3) and those catedl using
Galactica is due to inaccuracies in the DE406 efgism

Thus, despite the various changes in angular manehtthe individual
bodies of the Solar System, the angular momentutheofvhole system relative
to the center of mass remains unchanged. The degree of change indidages t
accuracy of the solution of equations describingaiS&ystem dynamics. The
Galactica gives the smallest change in angular mame and the Horizons
system gives the greatest. The change of angularemium of individual bodies
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in the best program of calculation can serve a®rtimark to determine the
causes of errors in those less accurate.

EVOLUTION OF ANGULAR MOMENTUM OF THE PLANETS
OVER MILLIONSOF YEARS

While studying the evolution of the orbits of plésyeve have established the
fact that the angular momentum of the orbital ntotad a planet relative to the

Sun averaged over one rotation of the plalﬁag,, was perpendicular to the mean
plane of the orbit [15], [18]. The study of the &ut@n of the orbits of the planets
over millions of years has shown that the vectérthe angular moment#i , Of

the planetary orbits precess relative to the amgt:ltzizmentuml?lC of the entire
Solar system. Figure 7 shows a fra®®,yvwzy Whose axiszy is directed along
the vectorl\7|C . The differential equations of motion for Solassm bodies are

solved in the stationary equatorial fraf®ayz attached to the Earth’s equatorial
plane from the year 1950.0. ThgOyy plane is inclined to th&Oy equatorial
plane at the angle
im = arcco$Mc/Mc) = 0.40183,
and the angle of the ascending node ofxf@yy plane is
om = ml2+arctgdMcy/Mc,) =0.06809,

where Mc,, Mcy, and Mc, are the projections 01\7IC on the axes of th@®xyz

equatorial system, and. :\/M§x+Méy+M§Z is the absolute magnitude of

M.
The average for period the angular momentum of anal I\7Ip is

perpendicular to the orbital plane of this plarféterefore we introduce a unit

vector S of the orbital axis, directed perpendicularly te torbital plane. The
projections of this vector are
SEMpdM, S=My/M;, S=M /M, (16)

where M, =,[M2 +M2 + M2, S=/S/+S+S? =1, andMp,, My, andM,,
are the projections of the vectd?lpon the axes of the equatorial baricentric

coordinate system.
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As it follows from Figure @, the projections of the orbital ax& on the axes

of the inertialOxyywzy frame are
S = ScCOPm + S Simpw;
Sm = ScSimpy-CoS$y + S COPMCOSy + S, Sirfy; an
Sim = SeSimpy-sifiy + S-copm-Sifiy + S-Ccosy.

Figures B and & show the evolution of the Earth’s orbital ax@ in two
planesyuOxy andz,Oxy. Figure b shows a segment of the trajectory of the end
of the axisS over 400 ka. Starting from the tinfe= -400 kyr, the orbital axis

rotates clockwise around the momentum vectﬁ[:, i.e. against the orbital
motion of the Earth around the Sun. Precessiomefaxis S proceeds with a
periodTs = 68.7 kyr, the average angular velocity per retioh beingws = -1885
"fcyr (1 cyr — 1 century). The trajectory made Ime tend of the vector in the
xvOyw plane is an open two-oval curve. This shape is wu¢he nutational
oscillations, i.e. due to the changes in the aigjlésee Figure &) of the deviation
of the orbital axisS from the momentum vectol<7lc, which is defined as the
quantity

G5 = arccosSy. (18)

i,
M -50 Myr

b
0,999

0.9985
-0.05 -0.025 0 0.025 5,

Figure 7. Precession of Earth’s orbit agsfor 50 Myr. 1 Myr is 1 million years,
and 1 kyr is 1 thousand years.

a. Coordinate systent is thecelestial sphere2, 3 are Earth’'s 1950.0 equatorial
and orbital planes, respectivel/js Earth’s orbital planes at epoth5 is Earth’s
orbit at epochr; 6 is the intersection of the moving orbital planghatihe fixed
equatorial plane

b, c. Precession of the Earth’s orbital axis in the plamxy (solid line for -400
kyr) and in the planeyxy (red dots for -50 Myr). The large dots are possi®f
Earth’s orbital axis at respective epochs. Datatgare spaced at 10 kyr.
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Precession of the vectd® relative to the vectoM,. is characterized by the

precession angle

s = arctdS,m/Sm +0.51, (19)
which is reckoned (see Figur@)7in the xyOyy plane from thexy-axis to the
ascending nodéd of the Earth's orbit on the,Oyy plane. The anglels is not
shown in Figure 4.
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Figure 8. Precession of the planets’ orbital axehe revolution about the Solar
System’s angular momentum vectdﬁC from -2.56 Myr to +1.2 Myr (arrow

shows the precession’s directioil)= 0 corresponds to the 1950.0 frame and the
path starting points, for planets from Mercury toakus; the paths for Neptune
and Pluto start from past epochs.

From Figure €, it is seen that the change of projecti®@g and S,y occurs
symmetrically about the ordinate axis, i.e. relatiw the angular momentum

vector |\7IC . In this case, the nutation ang® varies in the range 3.9-1&@s <
0.0514 radian, the average value beifg, = 0.0226 radian. The maximum
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deviation of the axisS from the angular momentuﬂx?lC makes an angle asax
= 2.94°, and the range of nutational oscillatieeches 2-2.94° = 5.88°.

The main period of nutational oscillations 1%, = 97.35 kyr. Since that
period is longer than the precessional pefige 68.7 kyr, i.e. it does not coincide
with the latter period. Then the end of the aSisn Figure b describes a double
oval trajectory. Note that there is a second peoifodutational oscillations, equal
to T'ep = 1.164 million years.

So, the evolution of the Earth's orbital planeus tb the precessional motion
of its orbital axisS around the angular momentum vectﬁg with a periodl’s =
68.7 kyr and due to the nutational oscillationgte$ axis occurring with a main
period equal td’g = 97.35 kyr.

01 0 01 003 0 003 003 0 003
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Figure 9. Precession of the orbital axes of thegtaround the Solar System
angular momentum vectcwﬂlc from -2.56 Myr to +1.2 Myr. Large dots mark the
positions of the axes ap = 1950.0.

The orbital axes of other planets in the Solar esystexecute similar
precessional rotations and nutational oscillati(see Figure 8). The orbital axes
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of all the planets revolve clockwise around the udaigmomentum vectol\7|c,

i.e. against the orbital motion. If the main perioidnutational oscillationg o
exceeds the precessional periidand the nutational oscillations are significant,
then the trajectory of th§u(Sw) axis represents, as in the case of Venus, Earth
and Mars, a two-oval trajectory. If the period aftational oscillationsl's is
several times shorter than the precessional petied, the trajectories of the axes,
as in the case of Uranus and Neptune, are shapededites.

It should be noted here that the trajectories m dhaphs of Figure 8 are
depicted with straight lines connecting the poisisice the interval between the
points is 10 kyr, then for a small precession pktike, for instance, for Jupiter
and Saturn witflTs= 50 kyr, the trajectories are represented by brakeves.

Figure 9 shows the precession of the axes of thé@soover 3.76 million
years. We see that, during this period, the orlixals of all the planets, with the
exception of Pluto, make several turns: from 75dgufor the orbital axes of
Jupiter and Saturn to 2 turns of the orbital atidleptune. Since the amplitudes
of the nutational oscillations of the orbits of \Wen the Earth, and Mars are
significant, the trajectories of their axes filetieentral part of th&, OSwm plane.
The smallest nutational oscillations are executgethke orbital axis of Pluto and,
as a result, the trajectory of this planet turnistole close to a circle.

Shown in Figure 10 is the precession of the axesheforbits in three-
dimensional form for the same period of time. lash graphs, the scale along the
vertical axis is significantly increased. As iteigident from the graphs, the end of

the unit vectorS of the orbital axis for the first four planets debes surfaces
convex at the center, and for the rest of the péa@anular surfaces.

Consider now in more detail the precession of tHat® The precession
angle (s is to be calculated by formula (19). For many ptanthe changes afs
are not monotonous and, along with a decreasetimitnT (the axisS rotates in
clockwise direction), there are intervals with e&sing angless. However, as it
is shown by the points in Figure 11, over a lomgetiinterval of 50 million years
no visible precession irregularities are obser&gown here are appriximating
dependences shown with thin lines:

Woa= WYso+2 7TTITs, (20)
wheresyis the value of the precession angle at the irtitie¢ T = 0; and

Tsare the precession periods of the orbital &&es
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Figure 10. Precession of the orbital 2x@®f the planets around the Solar System
angular momentum vectdﬁC from -2.56 Myr to +1.2 Myr, in 3D. The vertical

axis is shifted parallel to the vectdd , and the axes origin is shifted from the
origin of coordinate© SuSwSm.

The precession periods are represented in Figuréthlnumbers. Evidently,
the values ofis and (s, are coincident. From the presented data, it falldat
the orbital axes of Jupiter and Saturn precess thighgreatest velocity, and Pluto
with the lowest velocity. For two groups of planéfenus and Earth, Jupiter and
Saturn, the rates of precession are almost cointitiée note once again that over
small time intervals, the change in precessionesy differs from the linear law
of (20).

Recall that the orbital axisS is the non-dimensional vector of angular
momentum of the 0rbi1|\7|p of Earth relative to the Sumherefore, it can be

argued that the intricate behavior of Earth’s @lbitiane is explained by simpler
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motions, the precession of Earth’'s orbital angutammentum l\7lp and its

oscillations.
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Figure 11. 50 Myr evolution of the precession angierelative to the angular

momentumM of the Solar System for nine planets from MerdaryPluto (1 to
9), with the respectivés periods in Kyr.

CHANGE OF ANGULAR MOMENTUM WITH REGARD TO THE
ROTATIONAL MOTION OF BODIES

In the foregoing, we considered the total angulammantum of bodies in the
dynamics of the Solar System, which is induced Hwgirt orbital motion. The
consideration of the angular momentum induced kg ribtational motion of
bodies would expand the possibilities of this appto For example, in the Earth-
Moon system, one could trace an increase in thgabdngular momentum of the
Moon due to the inhibition of the Earth’s rotatiotherefore it is of interest to
consider the total angular momentum, taking intocoaat the angular momenta
induced by the rotation of bodies. These angulamerda are also called spins of
bodies. The above discussed programs for calcglatihy orbital motion do not
consider the spins of bodies. Therefore, at tligestr study on changes of angular
momentum in the dynamics of the Solar System cénlmperformed for orbital
angular momenta.

It should be noted that the initial conditions e tGalactica system include,
apart from orbital parameters, the radii of theibsdnd the projections of their
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spins. Therefore, if all of these parameters arecifipd for a problem of
gravitational interaction of bodies, then solvinigist problem will give the
dynamics of their orbital and rotational angulamamta. This analysis may cover
collisions of bodies, their mergers into one bamhlisions of the merged bodies,
and other processes accompanying collisions.

These processes are complex, and it is ratheculiffio choose and develop
algorithms to describe them. In this case, contrar the measurements of the
total (including the spins) angular momentum is tidy reliable method to
control the accuracy of the results.

It should be noted that we consider the changengtilar momentum in the
dynamics of the Solar System, i.e., in theorie<iileisig the motion of the Solar
System. A change of angular momentum in the Solateth depends not only on
the orbital and rotational motion of bodies butoats other factors. The most
important of them is orbital motion. In the futuweith the increasing accuracy of
the description of the first most important facidtse least important ones will
also be taken into account.

Below we give an estimate for the angular momentuéed by the second
most important factor, i.e., rotational motion afdies. IfJ is the axial momentum
of inertia andwy, is the angular velocity of rotation, then the spirthe body is

St = Jdy = 0.4m RP271Py = 0.8 TPy, (21)
wherem is the mass of the body;= 0.4m R’ is the axial momentum of inerti&
is its radius; andPy is its rotation period. If the average radiusha orbit isa and
the angular velocity of the body’s motion in orlstw,,, then its orbital angular
momentum is

Mp = Mm@ = 27@%P, (22)
whereP is the orbital period of the body. Then the ratiche spin to the orbital
angular momentum is written as

RY P
M, =04 = | —.
S./M, o(ajp (23)

rt

Table 4 presents these ratios for the planets (fento Pl) and the Moon
(Mo). The Moon’s orbital angular momentum was chdted for its orbit around
the Earth, and the planets’ momenta, for theirteraround the Sun. It is evident
that the orbital angular momentum is many ordermagnitude greater than the
spin. Nevertheless, the accuracy of Galactica appeabe able to take the latter
into account. Thus, in the future researchers béllable to pose problems and
attempt to solve them using the Galactica system.
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Table 4. Parameters of the planets from Mercuryligdo (Me to PI) and the
Moon (Mo) and their average orbital momerté) and spins$;). The “-” sign
before the numbers indicates that the planet m@Ebtekwise.

m10?%, | R, thou- P a, mil- P, Sy, Me,
kg sand km| days | lion km years kgi?/s kgi?/s
0.2408 9.74810*° | 9.15410% | 1.0610°
0.6152-2.13410* | 1.84510* | -1.1610°
1| 7.08810% | 2.66210 | 2.6610"
1.880F 2.1110% | 3.53010* | 5.9510°
11.85p5%6.82710% | 1.93210% | 3.5310°
29.42B51.37310% | 7.86110% | 1.74710°
83.74714-2.53910° | 1.70710% | -1.4910°
163.72302.3910 | 2.52810% | 9.41107
248.02089.96110% | 4.63810* | -2.1510%¢
0.0748 2.36310° | 2.8910* | 8.1810°

BOdy S(/ Mp

Me 33.019| 2.4397| 58.646R 57.90
Ve 486.86 | 6.0519| -243.01 108.2
Ea 597.37 6.3781 0.997 149.6
Ma 64.185 3.397 1.026 227.9
Jp 189900 71.492 0.413 778.3
Sa 56860 60.268 0.437 1429
Ur 8684.1 | 25.559 -0.65 2875.
Ne 10246 24.764 0.768 4504.
Pl 1.6509 1.151 -6.3867  5915.
Mo 7.3477 1.738 27.3217 0.3844

ST =R O[T OF|©

EVOLUTION OF ANGULAR MOMENTUM OF ROTATIONAL
MOTION OF EARTH OVER MILLIONSOF YEARS

As already noted, the orbital motion of Solar-sgstbodies proceeds in
accordance with the law of conservation of angul@mentum (10). The
rotational motion behaves differently. For instgniee to the rotation around its
axis, Earth is stretched in the equatorial regidrerefore, the Moon, the Sun and
the planets produce the moments of forces thatoacEarth; as a result, the
angular momentum of Earth rotation undergoes clangeaccordance with
Theorem (9). From this theorem, the differentiali@epns of rotational motion
for Earth are derived [19].

The orbital and rotational motions of the Earth schematically shown in
Figure 12 [20]. Earth moves in an elliptical orbibund the Sun, which is in the
focus of the ellipse. The smallest distance betwigenEarth and the Sun in
perihelion is designated &, and the greatest distance in aphelionRasThe
orbital motion of Earth proceeds counter-clockwifsgou look at the orbit from

the North PoleN. The perpendicular to the plane of the orbit isigieated asS,
and, as already mentioned, it is called the orkatds. The axisS precesses
around the vector of the angular momentt[ﬁl@ of the entire Solar system in
clockwise direction with a period of 68.7 thousyedrs.
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89.0d

Figure 12. The Earth's positions in its orbit in280at the days of the spring
equinox (March 20), of the summer solstice (Jung 8f the autumn equinox
(September 22) and of the winter solstice (Decenfdgr and the time of its
movement in days in spring (92.7 d), in summer{9B), in autumn (89.9 d) and

in winter (89.0 d):N is the axis of the Earth’s rotation, arlifl2 is the vector,

relative to which the axi?\ precesses with a period of 25.74 thousand ye&rs;
is the axis of the Earth's orbit, arIiZIc is the vector relative to which the ax&
precesses with a period of 68.7 thousand years [20]

The Earth rotates on its axii in the same direction in which the Earth
moves in its orbit, i.e., counter-clockwise. In t@temporary epoch, the axé

is inclined to the orbital axi§ at the angles = 23.443°. As a result of solving the
differential equations of Earth’s rotational motidhwas found that the axis of

Earth’s rotationN precesses around a second direction in space nshdigure
12 with a vectorl\7|2 [20]. The precession period of the ahb is 25.74 thousand

years. The vectoM, is inclined to the vectoM ., around which the orbits of the
planets precess, at an angle of 3.201402°. In tefndirection, the angular
momentum of the rotational motion of Earth almasincides with the axidN of

its rotation. Therefore, the motion of the vectdr reflects the precession of the
angular momentum due to Earth rotation.
The graph in Figure E8shows, in the form of the depender®;g on Sy, the

precession of the orbital axi§ around the vector of the angular momentum of
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the Solar systen1k7|C over a period of 5 million years. From startingnpds, the
axis S moves into the past counter-clockwise, and tofthere, its precession
proceeds in a clockwise direction. Poi@tsand3s show the position of the axis
S at other times. Over 5 million years, the preagssnainly proceeds in such a
way that the angle between the vectSrand I\7IC never exceeds 2.578°. Only in
one precession cycle at poi?d in epochT = -2.326 kyr the angle between the
vectorsS and M. reaches a value of 2.926°.
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Figure 13. Projections of the precession trajeesodf the Earth's orbital axiS
(a) and its axis of rotationN (b) for 5 Myr on a plane perpendicular to the
vectors MC and Mz, respectively. The positions of the axes at tirosts and

angles between themg and1y for T = 0 kyr, £ = 23.443°;2s and2y for T = -
0.2326 Myr,e = 30.778°3sand3y for T = -2.6582 Myr.e = 32.680°.

The graph in Figure 18illustrates, in the form of the dependenceNgf, on
Nymz, the precession of the axis of Earth rotatnaround the vectoM2 over a
period of 5 million years. Precession occurs withiring with an average angle
between the vector®N and |\7|2 equal tofy, = 23.614°, the maximum angle
beingfvzmax= 27.756°.

To compare the precessions of the axes of the Birtland its orbit S,
projectionsSyy, 1 Sz of the vectorS in the Xu2ymzzve frame were determined.
Figure 13 shows the motion of the axis of the Earth’s oitvith respect to the

vector I\7I2. The pointsls, 2s and 3s show the position of the axi§ in the
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corresponding epochs. At the poiffisand2s, the axesN and S are in one and
the same epoch = -0.2326 Myr. The large deviation of the orbials S has led

to a large deviation in the Earth add . However, the center of precession of the
S axis is shifted in the perpendicular directionlime 2y2s of deviation of the

axes N and S and, therefore, the angle between these axedsrepioch,e =
30.778°, is not maximal. Over a period of 5 milligears, the maximum angte=
32.68° occurs in the epodh= -2.6582 Myr, when the liney3s coincides with the

direction of deviation of the precession centethefS axis.

So, the angular momentum of the Earth's rotatiod ¢he angular
momentum of its orbital motion both precess in @ckWise direction yet with
different periods, 25.74 and 68.7 thousand yeaspactively. Here, the axes of
the precessions are different, and the angle bettyesn is 3.201402°.

CONCLUSIONS

The translational motion of the material points afi isolated system,
including the orbital motion of Solar-system bodigsoceeds in the analyzed
statements without a change in the angular momerdfithe entire system.
Therefore, a change of this quantity in the catldmtaof motions indicates the
error of the calculation method used. Here, theulmgnmomenta of individual
bodies undergo variation and the patterns of théatian for each body being
individual. However, all the momenta precess arotmedangular momentum of
the Solar system. The angular momenta due to tadaoal motion of individual
bodies also undergo variation. They also precessiader, the precession occurs
relative to another direction in space.

The accuracy of the existing methods for calcugptine motion of space
objects is inadequate for today’s problems of spgawk celestial mechanics. For
example, in order to improve the reliability of thalculated motion of Apophis
after its encounter with the Earth in 2029, theuaacy of these methods should
be increased by an order of magnitude [6], [7].€Reshers need more accurate
methods, not only to calculate the motion of astisrand spacecraft and to study
the evolution of the Solar System over geologidgalet intervals, but also for
many other problems of celestial mechanics, equrefine the masses of the
planets. Our studies on the change of angular mamemake it possible to
assess the accuracy of the methods used for cahguiaotions, find the causes of
their errors and the ways to improve these methods.
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